Quantum Communication Complexity

Ronald de Wolf

CWI Amsterdam

Communication Complexity

• Alice receives input $x \in \{0,1\}^n$, Bob receives input $y \in \{0,1\}^n$, and they want to compute $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ with minimal communication

 Well-studied classically (Yao 79, Kushilevitz & Nisan 97)

Example: Equality

• EQ
$$(x,y) = 1$$
 iff $x = y$

- Deterministic protocols need n bits Randomized: need only $O(\log n)$ bits
- Let $p_x(z) = x_1 + x_2 z + \cdots + x_n z^{n-1}$, choose field F with $|F| \ge 10n$
 - 1. Alice picks $z \in_R F$, sends $\underbrace{(z, p_x(z))}_{O(\log n)}$ bits
 - 2. Bob outputs whether $p_x(z) = p_y(z)$

This works because:

$$x = y \Rightarrow p_x(z) = p_y(z)$$
 for all $z \in F$
 $x \neq y \Rightarrow p_x(z) \neq p_y(z)$ for most $z \in F$

Quantum Communication Complexity

- What if Alice and Bob have a quantum computer and can send each other qubits?
- Holevo's Theorem (73):
 k qubits cannot contain more information
 than k classical bits
- This suggests that

quantum communication complexity

=
classical communication complexity
???

Wrong!

Why Study Q Communication Complexity?

- For its own sake
- To get lower bounds for other models
- It proves exponential quantum-classical separations in a realistic model, as opposed to
 - Black-box algorithms (not realistic)
 - Factoring (no proven separation because we can't prove factoring ∉ P)

Disjointness Problem

- Informally: Alice and Bob want to schedule an appointment, and need to find a day where they are both free
- ullet Formally: find i such that $x_i=y_i=1$
- Classical protocols need almost n bits, even if we allow some error probability
- We can use Grover's quantum search to search for an intersection (BCW 98):
 - \sqrt{n} steps, each step takes $\approx \log n$ qubits of communication $\Longrightarrow \sqrt{n} \cdot \log n$ qubits
- Improved to $\sqrt{n} \cdot f(n)$ (Høyer&dW 02), f(n) grows slower than $\log \log n$

Near-Optimal Lower Bound (Razborov 02)

- Quantum protocols for disjointness need to send at least \sqrt{n} qubits
- Proof (technical):
 - 1. A q-qubit protocol gives a $2^n \times 2^n$ matrix (with trace norm $\leq 2^{n+2q}$) that is "close" to the communication matrix for disjointness
 - 2. Any such approximating matrix needs trace norm $> 2^{n+\sqrt{n}}$
- Also holds if Alice and Bob start with fixed prior entanglement (such as EPR-pairs)

Quantum Fingerprinting (BCWW 01)

- $x \mapsto \text{quantum fingerprint} \quad \underline{\phi_x}$ $n \text{ bits} \quad m \text{ qubits}$
- If $|\phi_x\rangle, |\phi_y\rangle$ orthogonal, then we need m=nIf almost orthogonal, $m \approx \log n$ suffices
- Equality test:

$$|\phi_x\rangle = |\phi_y\rangle \Rightarrow$$
 measure 0
 $|\phi_x\rangle \perp |\phi_y\rangle \Rightarrow$ measure random bit

How to Get Almost-Orthogonal $|\phi_x angle$

•
$$p_x(z) = x_1 + x_2 z + \cdots + x_n z^{n-1}$$
, $|F| = n/\varepsilon$

•
$$|\phi_x\rangle = \frac{1}{\sqrt{|F|}} \sum_{z \in F} |z\rangle |p_x(z)\rangle$$

•
$$|\langle \phi_x | \phi_y \rangle| \le \varepsilon$$
 if $x \ne y$

• $2\log(n/\varepsilon) = 2\log n + 2\log(1/\varepsilon)$ qubits

Application: Simultaneous messages

• Constrained model of communication:

- We can solve this with $\approx 4 \log n$ qubits by sending fingerprints $|\phi_x\rangle$ and $|\phi_y\rangle$
- Classical lower bound: \sqrt{n} bits (NS 96)
- Exponential separation!

Summary

- Communication complexity: how much communication do Alice and Bob need to compute f(x,y)?
- Two examples of quantum advantages:
 - 1. Disjointness (appointment scheduling): can be computed with $\approx \sqrt{n}$ qubits, classical protocols need $\approx n$ bits
 - 2. Equality (in 3-party model): can be computed with $\approx \log n$ qubits, classical protocols need $\approx \sqrt{n}$ bits