

Motivation: Classical Program

Classical program : sequence of bits

01101

E

Motivation: Quantum Program

Quantum program State vector of n qubits

Motivation: Quantum Program

Quantum program State vector of n qubits

Universality?

Research Center for Quantum Information Bratislava, Slovakia

Programmable Quantum Processors

Vladimír Bužek Mark Hillery Mário Ziman

QUBITS \rightarrow **QGATES**

16 September, 2002, Dublin

Model of Classical Processor

Quantum processor – fixed unitary transformation U_{dp}

 $\begin{array}{ll} \mathcal{H}_d - \text{data system,} & S(\mathcal{H}_d) - \text{data states} \\ \mathcal{H}_p - \text{program system,} & S(\mathcal{H}_p) - \text{program states} \end{array}$

Two Scenarios

• Measurement-based strategy - estimate the state of program

$$F = \frac{N+1}{N+d}$$

Quantum strategy – use the quantum program register
 conditional (probabilistic) processors
 unconditional processors

CNOT $|\psi\rangle|0\rangle = |\psi\rangle|0\rangle$ CNOT $|\psi\rangle|1\rangle = \sigma_x|\psi\rangle\otimes|1\rangle$

- program state $|0\rangle \Rightarrow 1$ implemented, i.e. $\rho_d \rightarrow \rho'_d = \rho_d$
- program state $|1\rangle \Rightarrow \sigma_x$ implemented, i.e. $\rho_d \rightarrow \rho'_d = \sigma_x \rho_d \sigma_x$
- general pure state $|\Xi_p\rangle = \alpha |0\rangle_p + \beta |1\rangle_p \Rightarrow \rho_d \mapsto \rho'_d = |\alpha|^2 \rho_d + |\beta|^2 \sigma_x \rho_d \sigma_x$
- unital operation, since $\Phi[\mathbf{1}] = |\alpha|^2 \mathbf{1} + |\beta|^2 \sigma_x \mathbf{1} \sigma_x = \mathbf{1}$
- program state is **2-d** and we can apply **2** unitary operations

Question (Nielsen & Chuang)

Is it possible to build a *universal* programmable quantum gate array which take as input a quantum state specifying a quantum program and a data register to which the unitary operation is applied ?

on a qubit an ∞ number of operations can be performed

M.A.Nielsen & I.L.Chuang, Phys. Rev. Lett 79, 321 (1997)

- no universal deterministic quantum array of finite extent can be realized
- on the other hand a program register with *d* dimensions can be used to implement *d* unitary operations by performing an appropriate sequence of controlled unitary operations

 $|answer\rangle = |NO\rangle |deterministic\rangle + |YES\rangle |probabilistic\rangle$

G.Vidal and J.I.Cirac, Los Alamos arXiv *quant-ph/0012067* (2000) G.Vidal, L.mesanes, and J.I.Cirac, Los Alamos arXiv *quant-ph/0102037* (2001).

Correction of the error – **new run of the processor with** |2arphi
angle

Universal Probabilistic Processor

- implementation of any unitary transformation
- **BUT!** only with probability and $P_{\text{success}} = (\dim \mathcal{H}_p)^{-1}$ •Example (Quantum information distributor)

$$\mathcal{H}_{_{p}}=\mathcal{H}_{_{d}}\otimes\mathcal{H}_{_{d}}~~;~D=\dim\mathcal{H}_{_{d}}$$

 $\{|k\rangle\}_{k} = \{|k'\rangle\}_{k}$... basis of maximally entangled states of \mathcal{H}_{p}

 $\{U_k\}_k$... set of D^2 unitaries forming an operator basis, $\operatorname{Tr} U_k^{\dagger} U_l = D \delta_{kl}$

• subset of unitary transformations – higher probability

Implementation of Maps via Unconditional Quantum Processors

Mathematical Description of Quantum Processors

• definition of U_{dp} via "Kraus operators" $A_{kl} \coloneqq {}_{p} \left\langle l \left| U_{dp} \left| k \right\rangle_{p} \right\rangle$

$$U_{dp}\left(|\psi\rangle_{d} \otimes |k\rangle_{p} \right) = \sum_{l} \left(A_{kl} |\psi\rangle_{d} \right) \otimes |l\rangle_{p}$$

- normalization condition
- $\sum_{l} A_{k_{1}l}^{\dagger} A_{k_{2}l} = \delta_{k_{1}k_{2}} \mathbf{1}_{d}$ $\alpha \mapsto \alpha' = \Phi [\alpha] = \Sigma$
- induced quantum operation $\rho_d \mapsto \rho'_d = \Phi_k [\rho_d] = \sum_l A_{kl} \rho_d A^{\dagger}_{kl}$
- general pure program state $|\Xi\rangle_p = \sum_k \alpha_k |k\rangle_p$

$$\rho_{d} \mapsto \rho_{d}' = \Phi_{\Xi} [\rho_{d}] = \sum_{l} A_{l} (\Xi) \rho_{d} A_{l}^{\dagger} (\Xi)$$
$$A_{l} (\Xi) = {}_{p} \langle l | U_{dp} | \Xi \rangle_{p} = \sum_{k} \alpha_{k} A_{kl}$$

can be generalized for mixed program states

Classes of Processors

Induced mapping
 G: program states → set of operations

$$\xi_p \to \mathcal{G}(\xi_p) \equiv \Phi_{\xi} \; ; \; \Phi_{\xi} : S(\mathcal{H}_d) \to S(\mathcal{H}_d)$$

- Clases of processors
 - 1. U processors implement unitary operations
 - 2. covariant processors
 - 3. injective processors each ξ_p encodes different operation Φ_{ξ}

U processors

$$U_{dp}\left(\left|\psi
ight
angle_{d}\otimes\left|k
ight
angle_{p}
ight)\coloneqq\left(U_{k}\left|\psi
ight
angle_{d}\otimes\left|k\,
ight
angle_{p}
ight)$$

the most general processor that implements $N = \dim \mathcal{H}_p$ different unitaries

elementary programs $|k\rangle_p$ realize unitary transformation U_k general program state ξ_p implements unital operations, i.e. $\Phi[\mathbf{1}] = \mathbf{1}$

Injective Processors

the induced mapping \mathcal{G} is injective, i.e. $\forall \text{ pair } \Xi_{1p} \neq \Xi_{2p} \Rightarrow \Phi_1 \neq \Phi_2$

Does such processor exist? YES partial swap processors: $P_{\theta} = \cos \theta \mathbf{1} + \sin \theta S \quad S(|\psi\rangle \otimes |\phi\rangle) = |\phi\rangle \otimes |\psi\rangle, \quad \dim \mathcal{H}_p = \dim \mathcal{H}_d$ program Ξ_p encodes contractive operation Φ_{Ξ} with the only fixed point Ξ_d $\Phi_{\Xi}[\Xi_d] = \Xi_d$

Covariant Processors

• the covariance condition

- covariance with respect to the program states from the set *S*
- if S = S(H), then the existence of nontrivial covariant U_{dp} is questionable
- if U_{dp} implements unitary transformation \Rightarrow it is not covariant in this sence

if
$$U_{dp}^{(2)} = (\mathbf{1} \otimes V) U_{dp}^{(1)} (\mathbf{1} \otimes U)$$
, then $U_{dp}^{(1)} \sim U_{dp}^{(2)}$

- equivalent processors implement the same quantum operations
- basis operators $A_{jk}^{(1)}$ and $A_{jk}^{(2)}$ associated with the two processors satisfy

$$A_{jk}^{(2)} = \sum_{m,n=1}^{N} (U_{p1})_{jm} (U_{p2})_{nk} A_{mn}^{(1)}$$

Inverse Problem

"Given a set Φ_x of quantum operations . Is it possible to design a processor that performs all these operations?"

- 1. Continuous set of unitaries = question of universality NO
- 2. Phase damping channel = model of decoherence YES
- 3. Amplitude damping channel = model exponetial decay NO

Conclusions & Open Questions

- programmable quantum computer programs via quantum states programs can be outputs of another QC
- some CP maps via unconditional quantum processors
- arbitrary CP maps via probabilistic programming
- controlled information distribution (eavesdropping)
- simulation of quantum dynamics of open systems
- set of maps induced by a given processor (loops)
- quantum processor for a given set of maps
- quantum multi-meters

M.Hillery, V.Buzek, and M.Ziman: Phys. Rev. A 65, 022301 (2002).

M.Dusek and V.Buzek: Phys. Rev. A 66, 022112 (2002).

M.Hillery, M.Ziman, and V.Buzek: Phys. Rev. A 66, 042302 (2002)