

David Deutsch Richard Jozsa

Peter Shor

algorithms... ...demanding powerful quantum hardware

powerful quantum

micro versus Macro

Operation of a solid-state quantum-bit

Operation of a solid-state quantum bit

Quantronium superconducting circuit

Why superconductivity ?

All states paired

 2Δ

The Josephson junction

A single degree of freedom $[\hat{N}, \hat{\theta}] = i$

$$H = H_J + H_{elm}$$

Josephson qubits

Josephson qubits

Current-biased large junction

Medium-size junctions in a loop

Small junction in a box geometry

The Cooper pair box

Hamiltonian

"potential"

"kinetic"

Measuring the Cooper pair box

1996 charge of ground state $|0\rangle$ **1999** coherent superpositions $\alpha |0\rangle + \beta |1\rangle$ (Bouchiat et al., Quantronics) (Nakamura, Pashkin & Tsai, NEC)

decoherence and readout

decoherence and readout

readout through X fluctuating environment

qubit

Signal:
$$[\langle 1|A|1 \rangle - \langle 0|A|0 \rangle] = h \frac{\partial \nu_{01}}{\partial X}$$

Dephasing: $\delta X(t) \longrightarrow \delta \nu_{01}(t) = \frac{\partial \nu_{01}}{\partial X} \delta X(t)$

Readout + environment

Move adiabatically then readout

The Quantronium: a split junction Cooper pair box

State manipulation using the charge port

Bloch sphere representation in the rotating frame

Microwave drive at

$$v_{\mu w} \approx v_{01}$$

Rabi precession

 $\omega_{\text{Rabi}} = \alpha U_{\text{RF}}$

Decoherence and readout

But how ?

Preparation and ideal readout

READ

Experimental set-up

p.c.b.

Dilution fridge 20 mK

Level spectroscopy

Level spectroscopy $v_{01}(Ng, \phi/2\pi)$

Level spectroscopy $v_{01}(Ng, \phi/2\pi)$

1 pulse: quantum state manipulation

 μw amplitude dependence of Rabi frequency

charge qubit Chalmers U.

flux qubit

T.U. Delft (see hot topic K. Harmans)

phase qubit

NIST Martinis et al.

Measurement of the relaxation time

2 pulses: Ramsey interferences

Measurement of the coherence time

Coherence time at the optimal point...and 2% x 2e away

Three pulses:spin-echoes $\phi = 0$, $\Delta Ng = 2\% \times 2e$ $\pi/2$ $\pi/2$ 36 Ramsey π (%) d Mannamanan 34 32 **t**₁ **t**₂ 0.8 ∆**t (µs)** 0.2 0.4 0.6 1.0 1.2 1.4 1.6 0.0 35 (%) d $\Delta \mathbf{t}$ 34 Ζ 33 0 > 35 ∆t=0.59µs (%) d 34 33 35 ∆t=0.79µs (%) d mm.MMMMMmmmmm 34 33 4 ∆t=0.99µs 35 3

(%) d

(%) d

34

33

35

34

33

0.0

0.2

www.www.mm

0.6

0.4 **t1 (µs)** ∆t=1.19µs

0.8

adding ... and removing dephasing

11>

1qubit : full manipulation

controlled phase-shift

 $1qubit \rightarrow 2$ qubit gates

$1qubit \rightarrow 2$ qubit gates \rightarrow processor

TRY

NEEDED:

- quantum gates
- high fidelity readout(s)
- x100 coherence time

SPEC CEA-Saclay

D. VION A. COTTET A. AASSIME P. JOYEZ H. POTHIER M. DEVORET (now at Yale) C. URBINA D. ESTEVE P. ORFILA (technician)

and before: P. LAFARGE V. BOUCHIAT

