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Continuous Variables

many physical systems described by continuous variables (CV)

• particle in harmonic trap, 1-d motion
Hilbert space H = L2(IR),
dynamical variables X,P: [X,P] = i

• mode of the optical field
H = span{|0〉 , |1〉 , . . .} ∼ L2(IR)
field quadratures X,P

• atomic ensembles (symmetric states)
collective internal spin: 1√

N
Jx,y→ X,P

H =
(
C2
)N −→ L2(IR)



Continuous Variables for QIP

I have been used for several QIP tasks:

• on-demand entanglement [Julsgaard et al.; 2000; Silberhorn et al., 2001],

• teleportation [Furusawa et al., 1998; Kuzmich et al. 2000; Bowen et al. 2002],

• quantum cryptography [Ou et al., 1992; Silberhorn et al., 2002]

• interface light-atoms [Schori et al. 2002]

I universal quantum computing with CV: [Lloyd and Braunstein, 1998]

need Hamiltonians linear, quadratic, and cubic in X,P

I but: cubic interaction very hard to realize

? what can be done with limited set of operations?



Feasible Operations

Case 1: linear optics : all quadratic Hamiltonians can be realized:

• passive linear optics: beam splitters, phase plates

• active linear optics: squeezers

• noise: losses, discarding subsystems, thermal fields

• measurements: homodyne detection

Case 2: atomic ensembles interacting with light

• interaction Hamiltonian Hint = X1X2

• local rotations (no squeezing)

• measurements on the light field

what is possible under these limitations?
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Questions

I can we perform interesting tasks?

• teleportation, cryptography: yes

• entanglement distillation ?

• state transformation ρ→ ρ′ ?
• optimal entanglement generation

• optimal simulation of desired evolution

I need to characterize all possible operations



Questions

pick two:

I entanglement distillation of Gaussian states with linear optics

• ρ⊗N
AB

LOCC−→ |Ψ〉AB≈ maximally entangled
• important for long-distance quantum communication (repeater)

• for ρ Gaussian in principle possible with cubic interaction [Duan et al. 2001]

• many failures to find distillation protocol with linear optics

• Eisert et al. [2002]: cannot distill 2 copies of 1×1 Gaussian states with

(subset of) linear optics LOCC

I optimal entanglement generation with Hint

• entanglement is resource for many applications
• many results on what can be done: entanglement, spin squeezing,

quantum memory [Polzik, Mølmer, Wiseman, Duan and others]

• make most efficient use of precious interaction



Outline

I Gaussian operations [Giedke and Cirac, quant-ph/0204085]

• allow all the tools of linear optics

• characterize all Gaussian operations mathematically

• all Gaussian operations feasible with linear optics

I Distilling Gaussian states with Gaussian operations?

• characterize Gaussian LOCC

• distillation not possible with Gaussian operations

I interaction X1X2 [Giedke, Hammerer, Kraus, and Cirac, quant-ph/0209xy]

• what time-evolutions are accessible?

• optimal creation of entanglement



Gaussian States

I typical initial states: vacuum, coherent state, thermal state

I are all Gaussian states ⇔Wigner function is Gaussian

I Gaussian property preserved by quadratic Hamiltonians

I correlation matrix γ≥ iJ ∈M2n, displacement d ∈ IR2n

where J =
(

0 −1
1 0

)
⊕
(

0 −1
1 0

)
⊕ . . . (symplectic matrix)

I γkl = 2tr[(Rk−dk)(Rl−dl)ρ]− [Rk,Rl ], dk = tr(ρRk)

where R = (XA1,PA1,XA2, . . . ,XB1,PB1, . . .) , [Xk,Pl ] = iδkl.

I for bipartite states: all nonlocal properties contained in CM γ

γ =
(

A C
CT B

)
, ⇒ take d = 0



Gaussian Operations

I Gaussian Operation (GO): completely positive map G

G : ρ(Gaussian)−→ ρ′(Gaussian)

I Examples are

unitaries γ 7→ STγS z&%
'$

ρ 7→U†
SρUS

unitaries+ancillas
[Demoen et al. 1977]

γ 7→MTγM +G z j . . . j�
�

�
�tranc(U†

Sρ⊗ρancUS)︸ ︷︷ ︸
discard

unitaries + POVMs ??? z j . . . j�
�

�
�PψU†

Sρ⊗ρancUSPψ︸ ︷︷ ︸
measure

⇒ • give general form of GO G
• show how to implement map G: is linear optics enough?

• on bipartite systems: locally implementable?



Characterization of GOs

I Jamiołkowski Isomorphism [1972]:

physical maps on B(H ) ↔ states on H ⊗H
GO G on n modes ↔ 2n mode Gaussian state with CM Γ

I effect of GΓ on CM γ:

γ 7→ Γ1−Γ12
1

Γ2 + ΛγΛ
ΓT

12,

where Λ = diag(1,−1,1,−1, ...) and Γ =
(

Γ1 Γ12

ΓT
12 Γ2

)
.

I preparation of ρ(Γ) allows to perform GΓ

⇒ Gaussian operations are exactly those feasible with linear optics



Summary: Gaussian Operations

I Gaussian operation on n modes: CM Γ on 2n modes

I action on CMs

γ GΓ7→ Γ2−ΓT
12

1
Γ1 + γ

Γ12

I contain all transformations from linear optics

I all GO can be implemented with linear optics
(including unlimited squeezing )

I nonlocal properties of GΓ:

• G LOCC iff Γ separable

• G ppt preserving iff Γ ppt

=⇒ use separability criterion for bipartite Gaussian states



Entanglement Distillation

I given N copies of an entangled Gaussian state ρ

I find Gaussian LOCC to produce maximally entangled state ρ′

I allowed are all Gaussian LOCC, any number of modes, any
number of copies of ρ

I previous results indicate: not possible [Eisert et al. 2002; Fiurášek 2002]



No Distillation: Idea of Proof

I define a quantity V(γ) related to entanglement such that

• V(γseparable) = 1,V(γentangled)< 1
• max. entangled state: V(γmax) = 0
I V(γ⊕ γ) = V(γ) [i.e., V(ρ⊗ρ) = V(ρ)]

I show that Gaussian LOCC cannot decrease V

I use V(γ) := max

{
p≤ 1 :

1
p

γ separable

}
I G-LOCC have CM Γ = ΓA⊕ΓB +P,P≥ 0 [Werner and Wolf, 2001]

⇒ Gaussian LOCC cannot decrease V(γ)

⇒ distillation of Gaussian states
is not possible with Gaussian operations



CVs in Atomic Ensembles

I ensemble of N two-level atoms: spin-1/2 formalism

I symmetric states, collective atomic spin
Jx := 1√

N ∑N
k=1σ(i)

x , Jy = 1√
N ∑N

k=1σ(i)
y , [Jx,Jy] = i

NJz

I z-polarized state: Jz/N≈ 1I

⇒ Jx≈ XA,Jy≈ PA in “polarized subspace”

I light: two polarization modes

• Stokes parameters: [Sx,Sy] = iSz

• polarized light: Sz≈N1I⇒ Sx/
√

N≈ XL,Sy/
√

N≈ PL

I large N, polarized systems: continuous variables appropriate

interaction Hamiltonian Hint = gXAXL

[Kuzmich et al., 1998; Duan et al., 2001]



What can be done with Hint?

I available tools:

• interaction Hint = XAXL

• fast local rotations:

HA = X2
A +P2

A HL = X2
L +P2

L

I strategies: alternate local rotations Vk and interaction
rotate state, apply Hint for time t1, rotate, apply Hint for
time t2 etc. until ∑ktk = t:

Ut = Vne
−iHinttn · · ·e−iHintt2V1e

−iHintt1V0

• measurement of XL (homodyne detection)



Interesting Tasks

I state engineering

• generate entanglement

• generate squeezing

• generate any desired state

I engineering time-evolution

• Hamiltonian simulation: use Hint and Hloc to let
system evolve according to a desired Hamiltonian Heff

• gate engineering:
realize any desired U

I optimality



Optimal Entanglement Generation

I pure two-mode Gaussian states, CM γ
I smallest eigenvalue λmin of γ bounds entanglement:

Eneg(γ)≤ 1/
√

λmin [Wolf et al. 2002]

I applying Hint for time t can increase 1/λmin at most by factor et

I an optimal strategy for γ = 1I (vacuum): alternate Hint for time
∆t and local flip X→ P optimum achieved for ∆t→ 0

Uopt
t = lim

∆t→0
(Vflipei∆tHint)t/∆t = eit (XAPL+PAXL)/2

I measurements and (unsqueezed) ancillas do not help

I squeezed initial states are better



Further results

I engineering of time-evolutions

• all Gaussian unitaries can be realized

• in particular: Uswapwhich exchanges state of atoms and
light: quantum memory (interaction time t = π needed)

• all Hamiltonians Heff = aXAXL +bXAPL +cPAXL +dPAPL

can be simulated efficiently

I state engineering

• can reach all Gaussian states

• optimal rate of entanglement creation for arbitrary pure
two-mode state

• can create spin squeezed atoms without measurement

• optimal creation of spin squeezing



Summary

I Gaussian operations (GO) on n mode system

• characterized by 2n×2n correlation matrix

• Gaussian LOCC can be identified

• no distillation of Gaussian states with Gaussian opera-
tions

I atom-light–interaction XAXL

• can engineer all (Gaussian) unitary time-evolutions

• entanglement generation in the vacuum state:
optimal strategy: alternate Hint and X→ P flip
best entanglement after time t: Eneg(t) = et


