Gaussian Operations and Entanglement Distillation

Géza Giedke Barbara Kraus Klemens Hammerer MPQ

J. Ignacio Cirac

Max-Planck–Institut für Quantenoptik, Garching

Continuous Variables

many physical systems described by continuous variables (CV)

- particle in harmonic trap, 1-d motion Hilbert space $\mathcal{H} = L^2(\mathbb{I}\mathbb{R})$, dynamical variables X, P: [X, P] = i
- mode of the optical field $\mathcal{H} = \operatorname{span}\{|0\rangle, |1\rangle, \dots\} \sim L^2(\mathbb{I}\mathbb{R})$ field quadratures X, P

^

•

• atomic ensembles (symmetric states) collective internal spin: $\frac{1}{\sqrt{N}}J_{x,y} \to X, P$ $\mathcal{H} = (\mathbb{C}^2)^N \longrightarrow L^2(\mathbb{R})$

Continuous Variables for QIP

have been used for several QIP tasks:

- on-demand entanglement [Julsgaard et al.; 2000; Silberhorn et al., 2001],
- teleportation [Furusawa et al., 1998; Kuzmich et al. 2000; Bowen et al. 2002],
- quantum cryptography [Ou et al., 1992; Silberhorn et al., 2002]
- interface light-atoms [Schori et al. 2002]
- universal quantum computing with CV: [Lloyd and Braunstein, 1998] need Hamiltonians linear, quadratic, and cubic in X, P
- **but:** cubic interaction very hard to realize

what can be done with limited set of operations?

Feasible Operations

Case 1: linear optics: all quadratic Hamiltonians can be realized:

- passive linear optics: beam splitters, phase plates
- active linear optics: squeezers
- noise: losses, discarding subsystems, thermal fields
- measurements: homodyne detection

Feasible Operations

Case 1: linear optics: all quadratic Hamiltonians can be realized:

- passive linear optics: beam splitters, phase plates
- active linear optics: squeezers
- noise: losses, discarding subsystems, thermal fields
- measurements: homodyne detection

Case 2: atomic ensembles interacting with light

- interaction Hamiltonian $H_{int} = X_1 X_2$
- local rotations (no squeezing)
- measurements on the light field

What is possible under these limitations?

Questions

can we perform interesting tasks?

- teleportation, cryptography: yes
- entanglement distillation ?
- state transformation $\rho \to \rho'$?
- optimal entanglement generation
- optimal simulation of desired evolution

Questions

pick two:

- entanglement distillation of Gaussian states with linear optics
 - $\rho_{AB}^{\otimes N} \xrightarrow{\text{LOCC}} |\Psi\rangle_{AB} \approx \text{maximally entangled}$
 - important for long-distance quantum communication (repeater)
 - for ρ Gaussian in principle possible with cubic interaction [Duan et al. 2001]
 - many failures to find distillation protocol with linear optics
 - Eisert et al. [2002]: cannot distill 2 copies of 1×1 Gaussian states with (subset of) linear optics LOCC

\sim optimal entanglement generation with $H_{\rm int}$

- entanglement is resource for many applications
- many results on what can be done: entanglement, spin squeezing, quantum memory [Polzik, Mølmer, Wiseman, Duan and others]
- make **most efficient use** of precious interaction

Outline

Gaussian operations [Giedke and Cirac, quant-ph/0204085]

- allow all the tools of linear optics
- characterize all Gaussian operations mathematically
- all Gaussian operations feasible with linear optics
- Distilling Gaussian states with Gaussian operations?
 - characterize Gaussian LOCC
 - distillation **not possible** with Gaussian operations

interaction X_1X_2 [Giedke, Hammerer, Kraus, and Cirac, quant-ph/0209xy]

- what time-evolutions are accessible?
- optimal creation of entanglement

Gaussian States

- typical initial states: vacuum, coherent state, thermal state
- are all Gaussian states Wigner function is Gaussian
 - Gaussian property preserved by quadratic Hamiltonians
- **correlation matrix** $\gamma \ge iJ \in M_{2n}$, **displacement** $d \in \mathbb{R}^{2n}$ where $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \oplus \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \oplus \dots$ (symplectic matrix)
- $\gamma_{kl} = 2\operatorname{tr}[(R_k d_k)(R_l d_l)\rho] [R_k, R_l], \quad d_k = \operatorname{tr}(\rho R_k)$

where $\mathbf{R} = (X_{A1}, P_{A1}, X_{A2}, \dots, X_{B1}, P_{B1}, \dots), [X_k, P_l] = i\delta_{kl}$.

for bipartite states: all nonlocal properties contained in CM γ

$$\gamma = \begin{pmatrix} A & C \\ C^T & B \end{pmatrix}, \qquad \Rightarrow \mathsf{take} \quad d = 0$$

Gaussian Operations

Gaussian Operation (GO): completely positive map G

 $G:\rho(\text{Gaussian})\longrightarrow\rho'(\text{Gaussian})$

- show how to implement map G: is linear optics enough?
- on bipartite systems: locally implementable?

Characterization of GOs

Jamiołkowski Isomorphism [1972]:

physical maps on $\mathcal{B}(\mathcal{H}) \leftrightarrow$ states on $\mathcal{H} \otimes \mathcal{H}$

GO G on n modes $\leftrightarrow 2n$ mode Gaussian state with CM Γ

effect of G_{Γ} on CM γ :

$$\gamma \mapsto \Gamma_1 - \Gamma_{12} \frac{1}{\Gamma_2 + \Lambda \gamma \Lambda} \Gamma_{12}^T,$$

where $\Lambda = \text{diag}(1, -1, 1, -1, ...)$ and $\Gamma = \left(\begin{array}{cc} \Gamma_1 & \Gamma_{12} \\ \Gamma_{12}^T & \Gamma_2 \end{array} \right).$

• preparation of $\rho(\Gamma)$ allows to perform G_{Γ}

Gaussian operations are exactly those feasible with linear optics

Summary: Gaussian Operations

Gaussian operation on n modes: CM Γ on 2n modes

action on CMs

$$\gamma \stackrel{G_{\Gamma}}{\mapsto} \Gamma_2 - \Gamma_{12}^T \frac{1}{\Gamma_1 + \gamma} \Gamma_{12}$$

contain all transformations from linear optics

- all GO can be implemented with linear optics (including **unlimited squeezing**)
- > nonlocal properties of G_{Γ} :
 - $G \text{ LOCC iff } \Gamma \text{ separable}$
 - G ppt preserving iff Γ ppt

 \implies use separability criterion for bipartite Gaussian states

[Kuzmich et al., 1998; Duan et al., 2001]

What can be done with H_{int} ?

available tools:

- interaction $H_{\text{int}} = X_A X_L$
- fast local rotations:

$$H_A = X_A^2 + P_A^2$$
 $H_L = X_L^2 + P_L^2$

► strategies: alternate local rotations V_k and interaction rotate state, apply H_{int} for time t_1 , rotate, apply H_{int} for time t_2 etc. until $\sum_k t_k = t$:

$$\mathcal{U}_t = V_n e^{-iH_{\text{int}}t_n} \cdots e^{-iH_{\text{int}}t_2} V_1 e^{-iH_{\text{int}}t_1} V_0$$

• measurement of X_L (homodyne detection)

Interesting Tasks

state engineering

- generate entanglement
- generate squeezing
- generate any desired state
- engineering time-evolution
 - Hamiltonian simulation: use H_{int} and H_{loc} to let system evolve according to a desired Hamiltonian H_{eff}
 - gate engineering: realize any desired *U*

optimality

Optimal Entanglement Generation

- pure two-mode Gaussian states, CM γ
 - smallest eigenvalue λ_{\min} of γ bounds entanglement:

$$E_{
m neg}({f \gamma}) \leq 1/\sqrt{\lambda_{
m min}}$$
 [Wolf et al. 2002]

- applying H_{int} for time t can increase $1/\lambda_{\text{min}}$ at most by factor e^t
- an optimal strategy for $\gamma = 1$ (vacuum): alternate H_{int} for time Δt and local flip $X \to P$ optimum achieved for $\Delta t \to 0$

$$\mathcal{U}_t^{\text{opt}} = \lim_{\Delta t \to 0} (V_{\text{flip}} e^{i\Delta t H_{\text{int}}})^{t/\Delta t} = e^{it(X_A P_L + P_A X_L)/2}$$

- measurements and (unsqueezed) ancillas do not help
- squeezed initial states are better

Further results

engineering of time-evolutions

- all Gaussian unitaries can be realized
- in particular: U_{swap} which exchanges state of atoms and light: quantum memory (interaction time $t = \pi$ needed)
- all Hamiltonians $H_{eff} = aX_AX_L + bX_AP_L + cP_AX_L + dP_AP_L$ can be simulated efficiently

state engineering

- can reach all Gaussian states
- **optimal rate** of entanglement creation for arbitrary pure two-mode state
- can create spin squeezed atoms without measurement
- optimal creation of spin squeezing

Summary

Gaussian operations (GO) on n mode system

- characterized by $2n \times 2n$ correlation matrix
- Gaussian LOCC can be identified
- no distillation of Gaussian states with Gaussian operations

\succ atom-light–interaction $X_A X_L$

- can engineer all (Gaussian) unitary time-evolutions
- entanglement generation in the vacuum state: optimal strategy: alternate H_{int} and $X \rightarrow P$ flip best entanglement after time t: $E_{\text{neg}}(t) = e^t$