Gaussian Operations and
Entanglement Distillation

Geéza Giedke
Barbara Kraus

Klemens Hammerer

J. Ignhacio Cirac

Max-Planck—Institut fir Quantenoptik, Garching




Continuous Variables

many physical systems described by continuous variables (CV)

e particle in harmonic trap, 1-d motion . ’
Hilbert space H = L(R),
dynamical variables X, P: [ X,P] =1

e mode of the optical field
H = spar{|0),[1),...} ~ LA(R)

field quadratures X, P

e atomic ensembles (symmetric states)  £095Erse
collective internal spin: \/AN‘]XN — X,P

H = (CZ)N — LZ(R)



Continuous Variables for QIP

= have been used for several QIP tasks:

on-demand entanglement [Julsgaard et al.; 2000; Silberhorn et al., 2001],
teleportation [Furusawa et al., 1998; Kuzmich et al. 2000; Bowen et al. 2002],

guantum cryptography [ou et at., 1992; Siberhorm et al., 2002]

Interface light-atoms (schori et al. 2002]

— universal quantum computing with CV: [Lioyd and Braunstein, 1998]
need Hamiltonians linear, quadratic, and cubic in X,P

but: cubic interaction very hard to realize

gl What can be done with limited set of operations?



Feasible Operations

linear optics : all quadratic Hamiltonians can be realized:

e passive linear optics: beam splitters, phase plates

e active linear optics: squeezers

e noise: losses, discarding subsystems, thermal fields
e measurements: homodyne detection



Feasible Operations

linear optics : all quadratic Hamiltonians can be realized:

e passive linear optics: beam splitters, phase plates

e active linear optics: squeezers

e noise: losses, discarding subsystems, thermal fields
e measurements: homodyne detection

OE=EEVAR atomic ensembles interacting with light

e interaction Hamiltonian Hiyt = X1 X5
e |ocal rotations (no squeezing)
e measurements on the light field

Il What is possible under these limitations?



Questions

_— can we perform interesting tasks?

e teleportation, cryptography: yes
entanglement distillation ?

state transformation p — p’ ?
optimal entanglement generation

o
o
[
e optimal simulation of desired evolution

need to characterize all possible operations



pick two:

Locc .
o Pin —= |W) g~ maximally entangled

e important for long-distance quantum communication (repeater)
e for p Gaussian in principle possible with cubic interaction [puan et al. 2001]
e many failures to find distillation protocol with linear optics

e Eisertetal. [2002]: cannot distill 2 copies of 1 x 1 Gaussian states with
(subset of) linear optics LOCC

N optimal entanglement generation with Hiqt

e entanglement is resource for many applications

e many results on what can be done: entanglement, spin squeezing,
quantum Memaory [Polzik, Mglmer, Wiseman, Duan and others]

e make most efficient use of precious interaction



— Gaussian Operations [Giedke and Cirac, quant-ph/0204085]

e allow all the tools of linear optics
e characterize all Gaussian operations mathematically
e all Gaussian operations feasible with linear optics

_ Distilling Gaussian states with Gaussian operations?

e characterize Gaussian LOCC
e distillation not possible with Gaussian operations

— Interaction X]_X2 [Giedke, Hammerer, Kraus, and Cirac, quant-ph/0209xy]

e What time-evolutions are accessible?
e optimal creation of entanglement



Gaussian States

typical initial states: vacuum, coherent state, thermal state

are all Gaussian states < Wigner function is Gaussian

Gaussian property preserved by quadratic Hamiltonians

correlation matrix Y > iJ € Moy, displacement d € R

where J = 0-1 P 0 -1 @ ... (symplectic matri
=11 0 10 ... (symp matrix)

Vi = 2tr[(Re— di) (R —di)p] — [Re, R, d = tr(pRy)

where R = (Xa1, Pa1, Xa2, ..., Xg1, Pa, - - . ), [ X, B] = 1.

for bipartite states: all nonlocal properties contained in CM y

A C
Y= (CT B>’ =take d=0



Gaussian Operations

| Gaussian Operation (GO): completely positive map G

G : p(Gaussian) — pl(Gaussian)

— Examples are

o ,
unitaries y+— STyS @ p— UgpUs
. . . t
unitaries+ancillas V= MIYM+G (@ 0 --0) fan(Usp®Pandls)
[Demoen et al. 1977] ~—~—
discard
unitaries + POVMs ~ ??? (@ O ---0) PWsp@pandshy
N——"

measure
e give general form of GO G

e show how to implement map G: is linear optics enough?
e on bipartite systems: locally implementable?



Characterization of GOs

_— Jamiotkowski Isomorphism [1972]:

physical maps on ‘B(H) < stateson H @ H
GO G on nmodes < 2n mode Gaussian state with CM [

2 effect of G on CM .

1
M1 —T1o M1
Y— 11 14r2_|_/\y/\ 12)

where A =diag(1,—1,1,—1,...)and [ = rTl 12 .

preparation of p(I") allows to perform Gr

— Gaussian operations are exactly those feasible with linear optics



Summary:. Gaussian Operations

Gaussian operation on n modes: CM [ on 2n modes

action on CMs

-
4y e

contain all transformations from linear optics

all GO can be implemented with linear optics
(including unlimited squeezing )

nonlocal properties of Gr:
e GLOCCI iff I separable
e G ppt preserving iff [ ppt

—> use separability criterion for bipartite Gaussian states



_ given N copies of an entangled Gaussian state p

find Gaussian LOCC to produce maximally entangled state p’

_ allowed are all Gaussian LOCC, any number of modes, any
number of copies of p

_— previous results indicate: not possible [isert et al. 2002; Fiurasek 2002]



No Distillation: Idea of Proof

_ define a quantity V (y) related to entanglement such that

® V(Vseparablé — 17V(Ventanglea <1
e max. entangled state: V (Ymax) = 0

> V(yay) =V(y) lie,V(pp)=V(p)]
show that Gaussian LOCC cannot decrease V

use V(y) := max{ p<1l: %’y separabl%

G-LOCC have CMT =T po® g+ P, P > 0 [werner and wolf, 2001]

Gaussian LOCC cannot decrease V(y)

distillation of Gaussian states
IS not possible with Gaussian operations



CVs In Atomic Ensembles

symmetrlc states, collective atomic spin

‘]X — \/_Zk 1GX)7 ‘Jy \/_Zk—lo-y)a [‘]Xa‘]y} :IN‘JZ

Z-polarized state: J;/N ~ 1
Jy = Xa, Jy = Pa in “polarized subspace”
light: two polarization modes
e Stokes parameters: [S,§| = IS
e polarized light: S;~N1= S/vN=~X_,S/VN~P
large N, polarized systems: continuous variables appropriate
interaction Hamiltonian Hint = gXaX,

[Kuzmich et al., 1998; Duan et al., 2001]



What can be done with H;,t?

—avallable tools:

e interaction Hint = XaX|
e fast local rotations:

Ha=Xi+Px HL=X+P’

» strategies: alternate local rotations Vi and interaction
rotate state, apply Hiy: for time tq, rotate, apply Hin: for
time tp etc. until tx =1:

‘th — Vne_iHinttn .. e_iHinttzvle_iHinttlvo

e measurement of X (homodyne detection)



Interesting Tasks

_ state engineering

e generate entanglement
e generate squeezing
e generate any desired state

— engineering time-evolution

e Hamiltonian simulation: use Hi,t and Hioc to let
system evolve according to a desired Hamiltonian Hes
e gate engineering:
realize any desired U

_ optimality



Optimal Entanglement Generation

pure two-mode Gaussian states, CM Y

smallest eigenvalue Amin of Y bounds entanglement:

Eneg(y) < l/\/ Amin [Wolf et al. 2002]

applying Hin; for time t can increase 1/Anmin at most by factor e

an optimal strategy for y = 1 (vacuum): alternate Hiy; for time
At and local flip X — P optimum achieved for At — 0

OPt _ Iim (Vi @BtHin\t/At _ Jt(XaPL+PaX)/2
(th At—>0( flip )
measurements and (unsqueezed) ancillas do not help

sgueezed initial states are better



Further results

_ engineering of time-evolutions

e all Gaussian unitaries can be realized

e in particular: UswapWwhich exchanges state of atoms and
light: quantum memory (interaction time t = Tt needed)

e all Hamiltonians Heft = aXaX| + bXaPL 4 CPaX| 4+ dPAP
can be simulated efficiently

_ state engineering

e can reach all Gaussian states

e optimal rate of entanglement creation for arbitrary pure
two-mode state

e can create spin squeezed atoms without measurement
e optimal creation of spin squeezing



_— Gaussian operations (GO) on n mode system

e characterized by 2n x 2n correlation matrix
e Gaussian LOCC can be identified

e no distillation of Gaussian states with Gaussian opera-
tions

— atom-light—interaction XaX_

e can engineer all (Gaussian) unitary time-evolutions

e entanglement generation in the vacuum state:
optimal strategy: alternate Hi,: and X — P flip
best entanglement after time t: Epeqt) = €



