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Relative entropy

Classical setting: Let P,Q be probability distributions over the finite

sample space [n]. Their relative entropy (aka information divergence

or Kulback-Leibler divergence) is defined as

S(P‖Q)
∆
=

∑
i∈[n]

P (i)(logP (i)− logQ(i)).

Quantum setting: Let ρ, σ be density matrices in the same finite

dimensional Hilbert space H. Their relative entropy S(ρ‖σ) is defined

as

S(ρ‖σ) ∆
= Tr ρ(log ρ− logσ).
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A substate theorem about relative entropy

Theorem (informally): If S(ρ‖σ) ≤ k, then ρ
2O(k) is ‘approximately’

a ‘substate’ of σ i.e. ρ′

2O(k) ≤ σ, where ρ′ is close to ρ.

For Hermitian operators A,B, A ≤ B is a shorthand for “B - A is

positive semidefinite”.

Note that by the operator-monotonicity of log (i.e. A ≤ B ⇒ logA ≤
logB), if ρ

2k
≤ σ, S(ρ‖σ) ≤ k. The substate theorem can be thought

of as a converse.

The substate theorem thus gives a new intuitive way of understanding

what relative entropy really means.
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Substate theorem: formal statements

Classical setting: Suppose P,Q are probability distributions on [n].

If S(P‖Q) ≤ k, then for all r > 1, there exists a probability distribution

P ′ on [n] such that ‖P − P ′‖1 ≤ 2
r , and r−1

r2rk′
P ′ ≤ Q, where k′

∆
= k+ 1.

Quantum setting: Suppose ρ, σ are quantum states in the same

finite dimensional Hilbert space H. If S(ρ‖σ) ≤ k, then for all r > 1,

there exists a quantum state ρ′ in H such that
∥∥ρ− ρ′

∥∥
t ≤

2√
r
, and

r−1
r2rk′

ρ′ ≤ σ, where k′
∆
= 8k+ 14.
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Proof in classical setting

S(P‖Q)
∆
=

∑
i∈[n]

P (i) log
P (i)

Q(i)
≤ k.

Fix any r > 1. Let

Good
∆
= {i : P (i)/2r(k+1) ≤ Q(i)}.

P (i 6∈ Good) < 1/r, using a standard classical information-theoretic

inequality. Let P ′(i)
∆
= P (i | i ∈ Good). Then,

r − 1

r2r(k+1)
P ′ ≤ Q and ‖P − P ′‖1 ≤

2

r
.

This completes the proof of the substate theorem in the classical

case.
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Proof in quantum setting: I

The proof method of the classical setting fails to work, as ρ and σ

need not be simultaneously diagonalisable.

We use an indirect approach. First, define the observational diver-
gence of ρ and σ as follows.

D(ρ‖σ) ∆
= sup

F
Tr (Fρ) log

Tr (Fρ)

Tr (Fσ)
,

where the supremum is over all POVM elements F s.t. Tr (Fσ) 6= 0.

D(ρ‖σ) < S(ρ‖σ) + 1, using Lindblad-Uhlmann monotonicity.
Remark: Note that in general, D(ρ‖σ) can be much smaller than
S(ρ‖σ).
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Proof in quantum setting: II

We then show the following two results.

Substate theorem (first state pure): Suppose ρ is a pure state and

k
∆
= D(ρ‖σ). Then for all r > 1, there exists a pure state ρ′ such that∥∥ρ− ρ′

∥∥
t ≤

2√
r

and
(
r−1
r2rk

)
ρ′ ≤ σ.

Observational Divergence lifting theorem: Suppose K is another
finite dimensional Hilbert space, and dim(H) ≤ dim(K). Let |ψ〉 be a
purification of ρ in H ⊗ K. Then there exists a quantum state ω in
H⊗K such that TrK ω = σ and D((|ψ〉〈ψ|)‖ω) < 8D(ρ‖σ) + 6.
Remark: Note that we do not yet know how to ‘lift’ relative entropy.

Combining the above three statements and tracing out K, we finally
prove the substate theorem in the quantum case.

7



Two consequences of the substate theorem

Substate theorem: If S(ρ‖σ) ≤ k, ρ′

2O(k) ≤ σ, where ρ′ is close to ρ.

If S(ρ‖σ) ≤ k, ‖ρ− σ‖t ≤ 2− 2−O(k).

If S(ρ‖σ) ≤ k, F (ρ, σ) ≥ 2−O(k), where F (ρ, σ) is the Jozsa fidelity of

ρ and σ.
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The index function problem and privacy

Substate theorem: If S(ρ‖σ) ≤ k, ρ′

2O(k) ≤ σ, where ρ′ is close to ρ.

The problem: Alice has a bit string x ∈ {0,1}n and Bob has an
index i ∈ [n]. They must exchange messages according to a quantum
protocol P so that in the end Bob knows xi.

The privacy model: A player turns malicious (i.e. strays away from
P) and wants to gain information about the input of the other player,
without him realising that some cheating is going on.

The question: Suppose Bob ‘leaks’ at most b bits of information
about i to a malicious Alice. How much information about x does
Alice ‘leak’ to a malicious Bob?
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Privacy tradeoff: main idea

Substate theorem: If S(ρ‖σ) ≤ k, ρ′

2O(k) ≤ σ, where ρ′ is close to ρ.

Consider two-round protocols P only. Let ρi be Bob’s message when

his index is i. Let ρ
∆
= 1

n

∑
i∈[n] ρi be the average message. Let

ki
∆
= S(ρi‖ρ). Since the information about i in Bob’s message is

at most k, 1
n

∑
i∈[n] ki ≤ k. By Markov’s inequality, ki ≤ 10k for at

least 90% of the i’s (call them secretive).

A malicious Bob can cheat as follows. He sends ρ irrespective of his
input i. At the end, he tries to infer xj for all secretive j’s, using the
qubits in his possession. Since ρj and ρ are ‘close’ if j is secretive,
this is possible with reasonable probability. Since 90% of the j’s are
secretive, Alice must ‘leak’ a large amount of information about x.
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What does ‘close’ mean?

Substate theorem: If S(ρ‖σ) ≤ k, ρ′

2O(k) ≤ σ, where ρ′ is close to ρ.

Since we will allow k to be super constant,
∥∥∥ρj − ρ

∥∥∥
t
≈ 2 even for

secretive j’s. So trace distance is not the correct notion of ‘closeness’.
The substate theorem tells us, for every secretive j, that ρ contains
ρj with weight factor 2−O(k). Thus, there is the following ‘split’ of ρ.

ρ = αjρ
′
j + (1− αj)ρ

′′
j ,

where αj = 2−O(k), ρ′j, ρ
′′
j are quantum states, and

∥∥∥ρj − ρ′j
∥∥∥
t
is small.

Bob tries to guess xj as in P if the ‘split’ gives ρ′j; else, he tosses a

fair coin. This gives a success probability of 2−1 + 2−O(k).
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The final privacy tradeoff result

Substate theorem: If S(ρ‖σ) ≤ k, ρ′

2O(k) ≤ σ, where ρ′ is close to ρ.

Formalising the above ideas, gives us the following result.
Theorem: For the index function problem, if Bob ‘leaks’ at most b
bits of information about i to a malicious Alice, then Alice ‘leaks’ at
least n/2O(b) bits of information about x to a malicious Bob.
Remark: This tradeoff is optimal!

Corollary: For the index function problem, if Bob sends at most b
qubits, Alice must send at least n/2O(b) qubits.

This theorem generalises earlier work (in both classical and quantum
settings) by Miltersen, Nisan, Safra and Wigderson, and by Nayak.
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Importance of ‘splitting’

Substate theorem: If S(ρ‖σ) ≤ k, ρ′

2O(k) ≤ σ, where ρ′ is close to ρ.

The privacy tradeoff argument for index function crucially depends on

the fact that, for a secretive j, one can split the average message ρ

into a ‘good’ state ρ′j and a ‘bad’ state ρ′′j , the ‘good’ state appearing

with reasonable weight factor αj = 2−O(k). Lindblad-Uhlmann mono-

tonicity does not give this ‘split’; we require the substate theorem for

this purpose.

The ‘splitting’ approach via the substate theorem also plays a crucial

role in proving lower bounds for bounded error quantum protocols for

the pointer chasing problem, full pointer version.
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Conclusions and Open Problems

A substate theorem about quantum states.

Optimal privacy tradeoff for the index function problem.

Tight lower bound for bounded error quantum communication proto-

cols for pointer chasing.

Improving the parameters in the substate theorem (e.g. the depen-

dence on r)?

Privacy tradeoffs for other problems?

More applications of the substate theorem?
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