

Reinhard F. Werner Inst. Mathematical Physics TU Braunschweig

Quantum Information Theory and Quantum Algorithms: overview and current status

The Making of a Quantum Computer - Quantum Information in the 6th Framework Programme March 11, 2003

- General remarks+Road Map
- Capacity and error correction
- Sector Sector

Section Algorithms

Disclaimer

I will not give proper credit to anyone (including myself)

QUIPC-Cluster tags would be all over the place EQUIP, QAIP, Q-ACTA + others

Quantum Information Theory is by definition abstract

i.e., "a qubit is a qubit" (Shannon: bit=bit)

This complements system-specific theory

But it is from here that the guiding new ideas of the field come ...

The Classics of Quantum Information

From \approx 1997 the development was less dramatic.

Breakthroughs were much harder to get.

Why?

Sapid growth of dimension

Numerical simulations get stuck quickly to be expected!!! (without Q-Computer)

Lack of analytic concepts to tame this growth

Shor algorithm is really quite subtle no single reason why it works

Entanglement

cannot

be generated by a classical random generator for "hidden variables".

be transmitted via a classical chanel

Entanglement & Capacity

are very closely related

Entanglement & Capacity

can be upgraded by

Distillation

Error correction

best asymptotic (#outputs/#inputs) @ (error→0)

Distillible entanglement

Comparison of two channels $\Delta(S,T) = \inf_{E,D} \|S - ETD\|_{cb}$

C is called an achievable rate for S-information through T, if $\Delta \left(S^{\otimes n_{a}}, T^{\otimes m_{a}} \right) \rightarrow 0 \text{ for } \limsup_{a} \frac{n_{a}}{m_{a}} \leq c$ $C(S,T) = \sup \left\{ \text{ achievable rates } \right\}$

=capacity

(1) S= ideal classical 1 bit-channel C(S,T)=C(T) classical capacity

(2) S = ideal 1 qubit-channel C(S,T)=Q(T) quantum capacity

(3) S= ideal 1 qubit-channel, and coding may use arbitrary amounts of entanglement $\widetilde{C}(S,T)=V(T)$ entanglementassisted capacity Crucial for all notions of capacity:

small errors can be corrected

$$\|id_d - T\|_{cb} \le e \implies Q(T) \ge (1 - d) \log_2 d$$

To show this, need good error correcting codes

redundant transmission + majoriy rule does not work because of No-Cloning Theorem

The best known error correcting codes

correct a finite number of localized error syndromes and their superpositions.

- This allows the use of algebraic machinery ("stabilizer codes", "Clifford codes")
- and graphical representation ("graph codes")

Codes based on random graphs correct small errors (hashing)

Problems with this "discrete" theory of error correcting codes:

- Difficult to optimize for generic given channel
- For finite errors even good codes may be worse than nothing

Find direct optimization procedures without sacred computational basis !

http://www.imaph.tu-bs.de/qi/problems

(1) Classical capacity:

Do entangled states never ever help to encode classical information?

Then: $C=C_{Holevo}$, and this quantity is additive.

Hard problem:

- on the decoding side, entanglement may help
- purest outputs of product channels may be for entangled inputs

(2) Quantum capacity Q:

Find Coding Theorem !

(= formula without variation over asymptotically large systems)

Partial Solutions:

- various bounds in examples
- continuity of capacity (small errors)
- connection with entanglement quantities
- Peter Shor (unpublished): Q = regularized coherent information Additivity problem as in classical case

(3) Entanglement assisted capacity V:

Coding Theorem is proved (Shor, Bennett, Thaplyal), even with finite entanglement assistance (Shor, unpublished, up to an additivity problem)

Is this reversible? ("Reverse Shannon Theorem") $\widetilde{C}(S,T) \ \widetilde{C}(T,S) = 1$

Entanglement (qualitative)

All states of pairs: ≥15 dim convex set

separable states: Mixtures of products

positive partial transpose

bound entangled: not distillable

Does "non-distillability" imply "positive partial transpose" ?

i.e., does the Peres-Horodecki criterion decide distillability rather than entanglement?

Partial Solutions:

- Reduction to a single family of states
- Two papers supporting the conjecture "No". (1 US, 1 EQUIP)
- Numerical evidence (untrustworthy)

Entanglement (quantitative)

No entanglement measure has been shown to have all the good properties:

positivity, convexity, LOCC-monotonicity, additivity, continuity, computability

Solution Distillible entanglement D: how many singlets can I get out?

 \leq Entanglement cost E_C: how many singlets do I need? (=regularized entanglement of formation E_F)

 \checkmark Logarithmic negativity E_N : additive and computable

 \bigotimes Relative entropy of entanglement E_R : makes good bounds

How much is entanglement like some "stuff" ?

The distillation metaphor suggests:

How much is entanglement like some "stuff" ? The distillation metaphor suggests: $E_C = E_D$

- \checkmark Ok for pure states, and $E_C \ge E_D$ in general.
- Solution $E_{C}(\rho) > E_{D}(\rho)$ for some mixed states ρ . Examples were slow in coming.
- Solution Best example: dim*H*-dimensional family, $E_{C}(\rho) = E_{D}(\rho)$ in that family iff ρ is a locally tagged mixture

How much is entanglement like some "stuff" ?

- The distillation metaphor suggests $E_C = E_D$ but $E_C > E_D$ for most mixed states
- Suff" should be additive with respect to having both pairs : $E(\rho \otimes \sigma) = E(\rho) + E(\sigma)$

 E_D ? E_F ? E_N \ddot{u} E_R \hat{u}

Selevant for quantum optics and collective spin variables

 ✓ Parametrized by finite dimensional matrix (although on ∞-dim Hilbert space)

Section Sectio

✓ Good understanding of required "squeezing resources".

Section For some symmetric two mode states:

computation of E_F (Gaussian decomposition into Gaussians is optimal!) additivity

Multipartite entanglement

Many types, even of pure state entanglement including uncomparable ones

Complete classification of some symmetric states

Sell inequalities for many sites, maximal violations thereof

Multipartite quantum correlations

Miding Classical data in multipartite quantum states

Use of massively multi-partite entanglement in one-way quantum computing.

Still few but no longer embarassingly few

Shor & descendants

Section of A-Fourier: further signal transforms

✓ Generalization of period finding: hidden subgroup H⊂G : f(hg)=f(g) g∈G, h∈H works for abelian G and some non-abelian G

 Interesting applications by choice of f:
Pell's equation (long history): find x,y integers, x² – d y²=1
Q-algorithm (Hallgren) exponential speedup

Estimating Gauß sums in finite fields still uses Q-Fourier transform

Quantum random walks sometimes hit their target exponentially faster

A case of Inventor's paradox QI may help to prove classical results bounds on locally decodable codes (de Wolf et. al.)

identify strings by short tag

 Communication complexity: set disjointness:

make appointments with exchange of \sqrt{N} bits

Classical communication complexity in sharper tests of non-locality

missing

Cryptography

how not to discard most of the data continuous variables security against more general attacks

Simulating Hamiltonians

<u>given</u>: fixed interaction, local operations <u>get</u>: other interactions (cost?) also interesting in imaginary time (Stat. Mech.)

Where should we go ? (QI-Theory)

Continue the quests for ...

The quantitative theory of quantum resources

The Mother of all Additivity Theorems

Better error correcting codes

New algorithmic ideas

New tasks amenable to quantum solution

Where should we go ? (QI-Theory) Look more seriously at ...

Decoherence effects in complex systems

Cellular Automata (very distributed systems)

Statistical mechanics connections

Non-digital coding/computing