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General remarks+Road Map

Capacity and error correction

Entanglement qualitative & quantitative

Algorithms

I will not give proper credit to anyone (including myself) 

QUIPC-Cluster tags would be all over the place
EQUIP, QAIP, Q-ACTA + others

Disclaimer



is by definition

i.e., “a qubit is a qubit“ (Shannon: bit=bit )

This complements system-specific theory

But it is from here that the guiding
new ideas of the field come … 



The Classics of Quantum Information

Cryptography, Teleportation

Algorithms of  Shor & Grover

Entanglement distillation
Error correcting codes

Information Physics
Quantitative Turn



From ≈1997 the development was less dramatic. 

Breakthroughs were much harder to get.  

Numerical simulations get stuck quickly
to be expected!!! (without Q-Computer) 

Why ?

Rapid growth of dimension

Lack of analytic concepts to tame this growth 

Shor algorithm is really quite subtle
no single reason why it works



Decoherence

Fort Holevo

Quantum 
Computer

Terra Incognita

Few qubit systems

More coherent control

More places, 
some fortified

Building bridges
by known principles

Need new
design principles,
more good theory



- a unified quantitative view -

a property of 
(bipartite) states channels

Entanglement Capacity



cannot
be generated by a classical

random generator
for “hidden variables“.

be transmitted via 
a classical chanel

Entanglement Capacity



Entanglement Capacity&

are very closely related

Theorem:
Any state ρ can be decomposed uniquely
as ρ= (id⊗T)(σ) , 

with σ pure and T a channel. 

Theorem:Theorem:
Any state ρ can be decomposed uniquely
as ρ= (id⊗T)(σ) , 

with σ pure and T a channel. 

purepure



Entanglement Capacity&

can be upgraded by

Distillation Error correction
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Local quantum Operations
&Classical Communication

(LOCC)
Error Correcting Code

best asymptotic (#outputs/#inputs)  @ (error→0)
Distillible entanglement Capacity



Comparison of two channels
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(1)  S= ideal classical 1 bit-channel
C(S,T)=C(T) classical capacity

(2)  S= ideal 1 qubit-channel
C(S,T)=Q(T) quantum capacity

(3) S= ideal 1 qubit-channel, and coding may
use arbitrary amounts of entanglement

C(S,T)=V(T) entanglement-
assisted capacity

∼



Crucial for all notions of capacity: 

( ) dTQTidd 2cb
log1)( δε −≥⇒≤−

small errors can be corrected

To show this, need good error correcting codes

redundant transmission + majoriy rule
does not work because of  No-Cloning Theorem
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The best known error correcting codes

(“stabilizer codes“, “Clifford codes“)

(“graph codes“)

Five qubit code
Lines represent phase

factors in coding isometry

in

out

Codes based on random graphs
correct small errors (hashing)

correct a finite number of localized
error syndromes and their superpositions. 

and graphical representation

This allows the use of algebraic machinery



Problems with this “discrete“  theory
of error correcting codes:     

Find direct optimization procedures
without sacred computational basis !

Five qubit correction
of depolarizing channel

in

ou
tDifficult to optimize for

generic given channel

For finite errors even
good codes may be
worse than nothing



Open Problems

Do entangled states never ever help to
encode classical information?

Then: C=CHolevo, and this quantity is additive.

http://www.imaph.tu-bs.de/qi/problems

Hard problem: 
• on the decoding side, entanglement may help
• purest outputs of product channels may be for entangled inputs

(1)  Classical capacity:



Open Problems

Find Coding Theorem !
(= formula without variation over asymptotically large systems)

Partial Solutions: 
• various bounds in examples
• continuity of capacity (small errors)
• connection with entanglement quantities
• Peter Shor (unpublished): Q = regularized coherent information

Additivity problem as in classical case

(2)  Quantum  capacity Q:



Open Problems 

Coding Theorem is proved (Shor, Bennett, Thaplyal),
even with finite entanglement assistance

(Shor, unpublished, up to an additivity problem)

(3)  Entanglement assisted capacity V:

Is this reversible? („Reverse Shannon Theorem“)  

C(S,T) C(T,S) =1∼ ∼



All states of pairs:
≥15 dim convex set

pure states

separable states: 
Mixtures of products

positive partial
transpose

bound entangled:
not distillable



Does “non-distillability“ imply
“positive partial transpose“ ? 

Open Problem

i.e., does the Peres-Horodecki criterion
decide distillability rather than entanglement? 

Partial Solutions: 
• Reduction to a single family of states
• Two papers supporting the conjecture „No“.   (1 US, 1 EQUIP)
• Numerical evidence (untrustworthy)



No entanglement measure has been shown to have
all the good properties: 

positivity, convexity, LOCC-monotonicity, 
additivity, continuity, computability

Distillible entanglement D: how many singlets can I get out? 

Entanglement cost EC:       how many singlets do I need?
(=regularized entanglement of formation EF) 

Logarithmic negativity EN:  additive and computable

Relative entropy of entanglement ER:    makes good bounds



How much is entanglement like some “stuff“ ?

The distillation metaphor suggests:  

+ =

We expect that the
alcohol is still there
and can be recovered



How much is entanglement like some “stuff“ ?

The distillation metaphor suggests:  

+ =

Entanglement
Cost

Quantum state

Distillible
Entanglement

EC=ED



How much is entanglement like some “stuff“ ?

The distillation metaphor suggests:  EC=ED

Ok for pure states, and EC≥ED in general.  

But EC (ρ) >ED (ρ) for some mixed states ρ.
Examples were slow in coming. 

Best example:   dimH-dimensional family, 
EC (ρ) =ED(ρ) in that family iff
ρ is a locally tagged mixture



How much is entanglement like some “stuff“ ?

The distillation metaphor suggests EC=ED

but EC>ED  for most mixed states

ED ? EF ? EN ü ER û

“Stuff“ should be additive with respect
to having both pairs :  E(ρ⊗σ)=E(ρ)+E(σ)



<

Parametrized by finite dimensional matrix
(although on ∞-dim Hilbert space)

Existence of bound entangled states, all ppt

Efficient criterion for separability vs entanglement

Relevant for quantum optics and 
collective spin variables



<
Good understanding of required

“squeezing resources“.  

For some symmetric two mode states: 

computation of EF
(Gaussian decomposition into Gaussians is optimal!)

additivity



Many types, even of pure state entanglement
including uncomparable ones

Complete classification of some symmetric states

Bell inequalities for many sites, 
maximal violations thereof



Hiding Classical data in multipartite
quantum states

Use of massively multi-partite entanglement
in one-way quantum computing.

Works without entanglement !

0/1 0/1?



Still few …… but no longer embarassingly few



Variations on Q-Fourier: further signal transforms

Generalization of period finding: 
hidden subgroup H⊂G :   f(hg)=f(g)   g∈G, h∈H
works for abelian G and some non-abelian G

Interesting applications by choice of  f:
Pell´s equation (long history):   
find x,y integers,  x2 – d y2=1 

Q-algorithm (Hallgren) exponential speedup



Estimating Gauß sums in finite fields
still uses Q-Fourier transform

A case of Inventor´s paradox
QI may help to prove classical results
bounds on locally decodable codes (de Wolf et. al.)

Quantum random walks
sometimes hit their target exponentially faster



Fingerprinting
identify strings by short tag 

Classical communication complexity
in sharper tests of non-locality

Communication complexity: 
set disjointness: 
make appointments with exchange of √N bits



Cryptography
how not to discard most of the data
continuous variables
security against more general attacks

Simulating Hamiltonians
given: fixed interaction, local operations
get:     other interactions (cost?)
also interesting in imaginary time (Stat. Mech.)



The quantitative theory of quantum resources

The Mother of all Additivity Theorems

Better error correcting codes

New algorithmic ideas

New tasks amenable to quantum solution



Decoherence effects in complex systems

Cellular Automata (very distributed systems)

Statistical mechanics connections

Non-digital coding/computing


