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We show that weak measurements with post-selection, proposed in the context of the quantum
theory of measurement, naturally appear in the everyday physics of fiber optics telecom networks
through polarization-mode dispersion (PMD) and polarization-dependent losses (PDL). Specifically,
the PMD leads to a time-resolved discrimination of polarization; the post-selection is done in the
most natural way: one post-selects those photons that have not been lost because of the PDL. The
quantum formalism is shown to simplify the calculation of optical networks in the telecom limit of
weak PMD.

Several times in the history of science, different people
working on different fields and with different motivations
happened to discover the same thing, or to introduce
the same concepts. Think to the connection between
differential geometry and general relativity: physics re-
ceived a convenient mathematical tool for its predictions,
mathematics gained in popularity and interest because,
apart from its intrinsic beauty, it proved useful. In this
work, we point out a connection which should help to
bring together two very different communities: quantum
theorists and telecom engineers. The physical degree of
freedom that supports this connection is the polarization
of light; we show that the quantum formalism of weak
measurements and post-selection [1–3] applies to the de-
scription of polarization effects in optical networks [4].
We show how the connection holds down to the detailed
formulae; in particular, the knowledge of the ”quantum”
formalism can simplify some ”telecom” calculations.

A modern optical network is composed of different de-
vices connected through optical fibers. With respect to
polarization, two main physical effects are present. The
first one is polarization-mode dispersion (PMD): due to
birefringency, different polarization modes (P-modes in
the following) propagate with different velocities; in par-
ticular, the fastest and the slowest polarization modes
are orthogonal. PMD is the most important polarization
effect in the fibers. The second effect is polarization-
dependent loss (PDL), that is, different P-modes are dif-
ferently attenuated. PDL is negligible in fibers, but is
important in devices like amplifiers, wavelength-division
multiplexing couplers, isolators, circulators etc. In par-
ticular, a perfect polarizer is an element with infinite
PDL, since it attenuates completely a P-mode. Thus,
an optical network can be described by a concatenation
of trunks, alternating PMD and PDL elements. Com-
bined effects of PMD and PDL elements have been stud-
ied in Ref. [5, 6]; in particular, interesting phenomena
like anomalous dispersion have been shown to arise even
in simple concatenations, namely a PDL element sand-
wiched between two PMD elements.

The first piece of the connection we want to point out
is the following: a PMD element performs a measure-
ment of polarization on light pulses. In fact, PMD leads

to the separation of two orthogonal P-modes in time; this
separation is called differential group delay (DGD), noted
δτ . If δτ is larger than the pulse width, the measurement
of the time of arrival is equivalent to the measurement
of polarization — PMD acts then as a ”temporal po-
larizing beam-splitter”. However, in the usual telecom
regime δτ is much smaller than the pulse width. In this
case, the time of arrival does not achieve a complete dis-
crimination between two orthogonal P-modes anymore;
but still, some information about the polarization of the
input pulse is encoded in the modified temporal shape
of the output pulse. We are in a regime of weak mea-
surement of the polarization; we are going to show later
that we recover indeed the notion of weak measurement
of the quantum theorists, by measuring the mean time of
arrival (that is, the ”center of mass” of the output pulse).

The second piece of the connection defines the role of
PDL: a PDL element performs a post-selection of some
polarization modes. Far from being an artificial ingre-
dient, post-selection of some modes is the most natural
situation in the presence of losses: one does always post-
select those photons that have not been lost! This would
be trivial physics if the losses were independent of any de-
gree of freedom, just like random scattering; but in the
case of PDL, the amount of losses depends on the mean-
ingful degree of freedom, polarization. An infinite PDL,
as we said above, would correspond to the post-selection
of a precise P-mode (a pure state, in the quantum lan-
guage); a finite PDL corresponds to post-selecting differ-
ent P-modes with different probabilities (a mixed quan-
tum state).

In summary: by tuning the PMD, we can move from
weak to strong measurements of polarization; by tuning
the PDL, we can study the post-selection of a pure or of
a mixed state of polarization. More usefully, the elegant
formulae derived by physicists for the outcomes of weak
measurements allow us to calculate the mean time of ar-
rival of light pulses passing through networks with sev-
eral sections of PMD and PDL. Previously such config-
urations had appeared to be analytically quite complex,
even in the case with a single PMD and PDL. The weak
measurement formalism is therefore useful for describing
important effects in real telecom fibres.
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