Characterizing two-party correlations for quantum key distribution
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We show that a necessary precondition for unconditionally secure quantum key distribution is that
sender and receiver can prove the presence of entanglement in an effectively distributed quantum
state. One can therefore systematically search for entanglement using the class of entanglement
witness operators that can be constructed from the observed data. We apply our analysis to two
well-known quantum key distribution protocols, namely the 4-state protocol and the 6-state protocol.
As a special case, we show that, for some asymmetric error patterns, the presence of entanglement

can be proven even for error rates above 25% (4-state protocol) and 33% (6-state protocol).

PACS numbers:

Quantum key distribution (QKD) [1] allows two par-
ties (Alice and Bob) to generate a secret key without as-
sumptions on the computational and technological power
of an eavesdropper (Eve) who interfers with the signals.
Implementations of QKD schemes use two phases to es-
tablish a key. In the first one, quantum mechanical states
are used to create correlations between the legitimate
users. These correlations are described by a joint proba-
bility distribution P(A, B). In a second phase, called key
distillation, Alice and Bob use an authenticated public
channel to process the correlated data in order to obtain
a secret key.

We concentrate on the first phase, and we derive condi-
tions on the correlations that are necessary for the second
phase to succeed. To describe how the correlated data
are created let us view two types of protocols separately.
In entanglement based schemes a bi-partite state is dis-
tributed to Alice and Bob by an untrusted third party.
This party may be an eavesdropper who is in posses-
sion of a third sub-system that may be entangled with
those given to Alice and Bob. While the subsystems mea-
sured by Alice and Bob result in correlations described by
P(A, B), Eve can use her subsystem to obtain informa-
tion about the future key. In prepareéSmeasure schemes
Alice prepares a random sequence of pre-defined non-
orthogonal states that are sent to Bob through an un-
trusted channel (controlled by Eve). Generalizing the
ideas of Bennett et al. [2], the signal preparation can
be thought of as follows: Alice prepares an entangled bi-
partite state of the form |Wsource)aB = D ; /Pilei)|@i)-
If she measures the first system in the canonical or-
thonormal basis |e;), she effectively prepares the (non-
orthogonal) signal states |¢;) with probabilites p;. The
state |Wsource) B together with the action of the quan-
tum channel leads to an effective distributed bi-partite
state shared by Alice and Bob. One important character-
istic of these schemes is that the reduced density matrix
pa of Alice is fixed.

A necessary condition for the success of the key dis-
tillation phase is that the performed measurements to-

gether with P(A, B) suffice to prove that the (effective)
bi-partite state is entangled.

Observation 1 Assume that the observable joint prob-
ability distribution P(A, B) together with the knowledge
of the corresponding measurements can be interpreted as
coming from a separable state o 4p, then no secret key can
be distilled via public communication from the correlated
data.

The question whether the effectively distributed bi-
partite state is entangled or not can be addressed based
on the ideas of entanglement witnesses operators [3, 4].

Theorem 1 Given a set of local operations with POVM
elements F, @ Gy together with the probability distribu-
tion of their occurrence, P(A, B), then the correlations
P(A, B) cannot lead to a secret key via public commu-
nication unless one can prove the presence of entangle-
ment in the (effectively) distributed state via an entan-
glement witness W = Ea,b capFo @ Gy with cqp real
such that TtWao > 0 for all separable states o and
> ab CapP(a,b) <O.

The problem of determining whether P(A, B) might
lead to a secure key is therefore reduced to a search
over all optimal entanglement witnesses that can be con-
structed from the protocol and the collected data. We il-
lustrate the consequences of this view for two well-known
protocols: The 6-state protocol [5] and the 4-state pro-
tocol [1].

For the case of the 6-state protocol, Alice and Bob
perform projection measurements onto the eigenstates of
the three Pauli operators o,, 0, and o, in the entangle-
ment based scheme where Eve distributes bi-partite qubit
states. In the corresponding prepare&measure scheme,
Alice prepares the eigenstates of those operators by per-
forming the same measurements on a maximally entan-
gled qubit state. This protocol allows Alice and Bob to
construct any entanglement witness of the form

we %

i,j={0,z,y,2}

Cij 0; ® 0y, (1)



where 0g = 1 and ¢;; are real numbers. This means that
Alice and Bob can evaluate the class of optimal witnesses
for two-qubits states. In this protocol all entangled states
can be detected. Alternatively to the witness approach,
Alice and Bob can employ quantum state tomography
techniques to reconstruct the quantum state ps4p and to
check its separability e.g. via the Peres-Horodecki crite-
rion [3, 6].

While the analysis of the 6-state protocol is quite sim-
ple, the 4-state protocol, however, needs a deeper exami-
nation since it turns out that the optimal witnesses can-
not be evaluated with the given correlations. As a result,
there can be entangled states that give rise to correlations
P(A, B) that are not sufficient to prove the presence of
entanglement. In this protocol, Alice and Bob perform
projection measurements in two qubit bases, say x and z.
In the corresponding prepare&measure scheme Alice uses
the same set of measurements on a maximally entangled
state to prepare the eigenstates of these operators as sig-
nals. For the entanglement scheme we obtain the set of
entanglement witnesses, which we shall denote as EWy,
that can be evaluated with the resulting correlations as

D>

i,j={0,z,z}

Cij 0; Q0j . (2)

In this class, one can characterise the family of witness
operators that are optimal.

Theorem 2 Consider the family of operators W =
HQ+Q™), where Q = |@e)(¢e| and |¢.) denotes a real
entangled state. The elements of this family are witness
operators that are optimal in EW4 and detect all the en-
tangled states that can be detected within EWy.

This set of witness operators, W = 1(Q + Q™?), pro-
vides an infinite number of necessary and sufficient con-
ditions for the presence of entanglement in the observable
correlations P(A, B). Each condition is characterized by
a real entangled state |¢.), and therefore the whole set
of them can be easily parametrized as a function of only
three real parameters. From a practical point of view,
this means that Alice and Bob can easily checked this
set, of conditions just with the help of a simple computer
program.

The corresponding 4-state prepare&measure scheme
allows additionally the use of the component oy ® 1p.
The entanglement witnesses EWy are therefore contained
in those that can be constructed in this case.

Finally, let us briefly analyze the implications of our
results for the relationship between the bit error rate e
in the protocols and the presence of correlations of quan-
tum mechanical nature. Here error rate refers to the

sifted key, that is, those events where signal preparation
and detection employ the same polarization basis. An
entanglement breaking channel gives rise to e > 25% (4-
state protocol) and e > 33% (6-state protocol), respec-
tively [5, 7]. This means that if the error rate is below
these values, this is already sufficient to prove that the
joint probability distribution P(A, B) contains quantum
mechanical correlations. However, for some asymmet-
ric error patterns, it is possible to detect the presence
of quantum correlations even for error rates above 25%
(33%). Let us illustrated this fact with an example moti-
vated by the propagation of polarized light in an optical
fiber. This channel can be described by a unitary trans-
formation. Consider, for instance,

(o) = (cosﬂ —sinG) 3)

sinf cosf

The resulting bit error rate is given by e = sin?4 and
e= %sin2 @ for the 4-state and the 6-state protocols, re-
spectively. Nevertheless, in both cases the existence of
quantum correlations can be detected for all angles 6.
The case of the 6-state protocol is clear, since a unitary
transformation preserves the entanglement and all entan-
glement can be verified in this protocol. With respect to
the 4-state protocol, it can also be shown that there is
always an entanglement witness W € EWy that detects
quantum correlations in P(A, B).

To conclude, we have that a necessary condition for
QKD is that the legitimate users can prove the presence
of entanglement in the effectively distributed quantum
state. We have analyzed the 4-state and 6-state QKD
protocols, and we have derived necessary and sufficient
conditions for the existence of quantum correlations in
both protocols. As a special case, we have demonstrated
that, for some asymmetric error patterns, the presence
of this type of correlations can be detected even for error
rates above 25% and 33%, respectively.
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