Realizing the EPR gedanken experiment with transverse momentum entangled photons

Ryan Bennink¹, Sean Bentley¹, Bob Boyd¹ and John Howell²

¹Institute of Optics, University of Rochester, Rochester, NY, 14627 ²Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA

Abstract

We report on the realization of the EPR gedanken experiment using transverse momentum entangled photons. As EPR showed, when one chooses to measure the momentum p of one of the particles of a momentum correlated pair, the other particle is projected into a correlated momentum eigenstate. However, if one wishes to measure the position x of one particle the other particle is projected into a correlated position eigenstate. This leads to the rather interesting result that a relative uncertainty product of position and momentum of the two particles can be exactly zero. The result can be much smaller than \hbar , which is predicted by classical wave theory. We realized this EPR experiment by using spontaneous parametric downconversion from a type-II BBO crystal following many aspects of a proposal by Lugiato's group. By projecting the down conversion source into the near field (position-like) and far field (momentum-like) of the detectors, we were able to measure a relative uncertainty product of $0.3\hbar$.