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A scheme for a discrete time quantum walk on a general graph of N vertices with undirected edges
is given in terms of an efficient gate sequence starting from one copy of a quantum state encoding
the adjacency matrix of the graph. Most of the examples of quantum walks in the literature
treat graphs of fixed, small (. logN) degree. To obtain a quantum speed up over classical for
comparable resources it is necessary to code the position space of the quantum walk into a qubit
register (or equivalent). The general discrete quantum walk method also shows an exponential
saving in resources to store the description of the graph.

One of the most important tasks on the theoretical side
of quantum computing is the creation and understanding
of quantum algorithms. The recent presentation of two
quantum algorithms based on quantum versions of ran-
dom walks is particularly important in this respect, since
this provides a new type of algorithm which can show an
exponential speed up over classical algorithms, to add to
those based on the quantum Fourier transform. Childs
et al [1] have produced a scheme for a continuous time
quantum walk that can find its way across a particular
graph exponentially faster than any classical algorithm,
while Shenvi et al [2] proved that a quantum walk can re-
produce the quadratically faster search times found with
Grover’s algorithm for finding a marked item in an un-
sorted database. For an overview of the development of
quantum walks for quantum computing, see Kempe [3].

One point that has not been made explicit by most au-
thors to date is that if, as is usually the case, the answer
to the problem will be obtained by measuring the posi-
tion of the particle, the quantum walk should have the
position space encoded into a qubit register (or equivalent
[4]). This is simply because for a classical random walk
algorithm, the location of the particle can be encoded in
a binary string, so we will penalise ourselves by requiring
exponentially more resources if we adopt unary encoding
for our quantum walk. Childs et al. [1] explicitly perform
this encoding, but without remarking on this point, since
their primary motivation is to show that they can imple-
ment a continuous time Hamiltonian evolution efficiently
on a discrete quantum circuit. On the other hand, this
places the proposed physical implementations of a quan-
tum walk [5–7] firmly in the realm of physics, as all of
them have the position space of the walk set up in such a
way that it cannot be measured as a binary encoded bit
string.

Here I describe how to apply a discrete time coined
quantum walk to a general graph given only by the ad-
jacency matrix. The continuous time quantum walk as
originally presented by Farhi and Gutmann [8] is already
formulated to do this. If one is also given extra informa-
tion about the graph, e.g., that it is of bounded degree,
and the neighbouring sites can be predicted from the
current location, more efficient algorithms can be con-
structed for both classical and quantum versions of dis-
crete and continuous time random walks. This reduction
happens in general because we can encode the descrip-

tion of a more regular graph in a more efficient way than
the adjacency matrix.

It is possible to encode the whole adjacency matrix
A, defined by Axy = 1 if the vertices labeled x and y
are joined by end edge and zero otherwise, into a single
quantum state

|G〉 =

N−1∑

x=0

N−1∑

y=0

|x, y, Axy〉, (1)

where x and y run through all the vertex labels 0..(N −
1). It would be useful, therefore, if we could generate
one of these states just once, and use it as input the
the quantum algorithm to perform the quantum walk,
using additional qubits to record the vertex position of
the walk, and the trial vertex “coin” for the next step.
The state |G〉 is encoded in 2n + 1 qubits, where n =
dlogNe. We need another 2n qubits to hold the values
of x, y for the quantum walk, plus another 4n ancilla
qubits to hold intermediate results. The ancilla qubits
start in state |0〉 and finish in the same state.

Figure 1 shows schematically how the quantum circuit
works. To update the position of the walk, we need to
perform a conditional swap on the two registers of |ψ〉 for
each pair (x, y) for which Axy = 1. In Fig. 1, the pro-
cess of computing a qubit that is |1〉 if Axy = 1 is shown
schematically for a two-qubit quantum walk state |ψ〉, the
extension to 2n qubits is obvious. The three qubit Toffoli
gates flip the value of the target qubit if the other two
qubits are in state 0(1), denoted by white(black) circles.
The controlled swap can be done as a sequence of Fred-
kin gates applied to each corresponding pair of qubits. It
is then necessary to “uncompute” the values in the an-
cilla qubits so they are restored to state |0〉 ready for the
next step of the walk. This is done by reversing the gate
sequence used to compare the values of (x, y) in |ψ〉 and
|G〉. Even though the state |ψ〉 has been conditionally
swapped, because Axy = Ayx, the state |G〉 is invariant
under exchange of x and y so the uncompute step still
works. Thus we see that this method will only work for
undirected graphs. Finally, we need to “toss the coin”
to produce a new trial value for the next step. This can
be done using any efficient, i.e. O(poly(n)) gates unitary
operation.
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FIG. 1: Schematic circuit for one step of a discrete quantum walk. The graph is encoded in the state |G〉 and the walk position
and coin state are recorded in |ψ〉. The three qubit gates are Toffoli gates conditioned on 1 (filled circles) or 0 (open circles)
flipping the qubit under the cross. The conditional SWAP gate is a set of Fredkin gates on each pair of qubits, and the TOSS
operation can be chosen to suit the particular application.

Given |G〉, a single step of the quantum walk algorithm
can be done efficiently, i.e., in O(poly(n)) gates per step.
Each of the three qubit gates can be performed using a
small number (typically 5 to 10) one and two qubit gates,
see e.g., Ref. [9] for more details on construction of gates
from more elementary quantum operations. The required
number of three-qubit gates per step is thus 6n for the
comparison of the values of (x, y, Axy) down to one qubit,
plus n for the conditional swap, plus another 6n to un-
compute the ancillas, plus however many operations are
required to toss the value of the y register. The total
number of gates is thus & 14n, which is linear in n, com-
fortably within the original prescription that “efficient”
means O(poly(logN)). The state |G〉 is unchanged by
each step of the quantum walk, but the state |ψ〉 is being
entangled with it, so at the end of the walk when the
position |ψ(x)〉 is measured, this destroys |G〉 as well.

Several points are notable about this implementation.
First, this shows that both discrete and continuous for-
mulations of quantum walks can treat any undirected
graph (previously the discrete, coined quantum walks
only applied to fixed degree graphs). Second, even before
discussing whether the quantum walk itself gives advan-
tages over classical algorithms, the storage involved to
contain the description of the graph, 2n+ 1 qubits, is an
exponential improvement over N(N − 1)/2 classical bits.
Third, it is interesting that it turns out to depend on the
graph being undirected for both the discrete and contin-
uous time methods: there are parallels with Abelian and
non-Abelian groups and the hidden subgroup problem
that deserve further investigation. (See [10, 11] for some
discussion of possibilities on directed graphs.)
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