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We prove the unconditional security of the Bennett 1992 protocol, by using a reduction to an
entanglement distillation protocol initiated by a local filtering process. The bit errors and the phase
errors are correlated after the filtering, and we can bound the amount of phase errors from the
observed bit errors by an estimation method involving nonorthogonal measurements.

Quantum key distribution (QKD) is one of the interest-
ing topics in the quantum information processing, which
allows the sender (Alice) and the receiver (Bob) to share
the secret key with negligibly small leakage of informa-
tion to an eavesdropper (Eve). Since Bennett and Bras-
sard introduced the first QKD protocol, called BB84 [1]
protocol, several schemes for QKD have been proposed
[2]. One of the simplest of such protocols is called B92
[3], which is based on the use of only two nonorthog-
onal states. This nonorthogonality prevents Eve from
discriminating states deterministically, which makes this
protocol secure.

It is quite hard, however, to prove the security against
so-called coherent attack that is the most general at-
tack allowed by quantum mechanics. In this attack, Eve
lets all of the transmitted qubits interact with her probe
system and she performs an optimum measurement on
the probe. For the BB84 protocol Mayers first proved
the unconditional security [4]. In [5–7], the security is
proven by showing the relationship between QKD and
other important protocols in quantum information, such
as the entanglement distillation protocol (EDP) [8] and
the Calderbank-Shor-Steane (CSS) quantum error cor-
recting codes [9]. It is natural to ask about the uncondi-
tional security of the B92 protocol, which is conceptually
the simplest of the QKD protocols. The analyses of the
B92 protocol is hence expected to give us an idea how the
nonorthogonality is related to the ability to convey secret
information. Since the security proofs of BB84 rely on
the symmetry of the protocol which is not shared in B92
and in B92 the channel loss directly affects the security,
it is not a trivial task to modify it for B92.

In this presentation, we talk about the unconditional
security of the Bennett 1992 quantum-key distribution.
In the proof, we have assumed that Alice has an perfect
single photon source, Bob’s polarization measurement is
perfect and he has a perfect single photon counter that
discriminates between single photon states and vacuum-
state or multi-photon states. Under these assumptions,
we show that a secure B92 protocol can be regarded as
an EDP initiated by local filtering [10].

Now, let us follow the proof briefly. We first consider
the QKD protocol based on EDP. Let us assume that Al-
ice initially prepares the nonmaximally entangled state

|Ψ〉AB = 1√
2
(|0z〉A|ϕ0〉B + |1z〉A|ϕ1〉B), where |ϕj〉 ≡

β|0x〉 + (−1)jα|1x〉, (0 < α < 1/
√
2), β ≡ √

1− α2,
and {|0z〉, |1z〉} and {|0x〉, |1x〉} are the sets of eigen-
vectors of the Pauli operator of Z and X components
respectively. |ϕ0〉 and |ϕ1〉 are the two nonorthogonal
single photon polarization states that are used in the
B92 protocol. After Alice sends the half of the state
of |Ψ〉AB to Bob, he performs a “local filtering opera-
tion” on qubit B, described by the Kraus operator oper-
ator Ffil ≡ α|0x〉B〈0x| + β|1x〉B〈1x|. When the channel
is noiseless and Eve does nothing, this operation yields
the maximally entangled state (EPR state) (|0x〉A|0x〉B+
|1x〉A|1x〉B)/

√
2 with probability 2α2β2, since the ini-

tial state is also written as |Ψ〉AB = β|0x〉A|0x〉B +
α|1x〉A|1x〉B. Since this filtering is probabilistic, in order
to verify whether the filtering suceeds or not, Bob tells
this to Alice by public channel. If the filtering failed,
then Alice and Bob discard the event. Repeating theses
procedures many times, each of Alice and Bob measures
σz of the filtered pairs so that they obtain secure key.

When noise is present or there exists Eve, the fil-
tered states may include bit errors, represented by the
subspace spanned by {|0z〉A|1z〉B, |1z〉A|0z〉B}, and a
phase error, represented by the subspace spanned by
{|0x〉A|1x〉B, |1x〉A|0x〉B}. In order to distill the EPR
pairs, Alice and Bob run the EDP based on CSS code
[7] and after this EDP Alice and Bob measure each σz

of the EPR pairs so that they obtain secure key. For
this EDP, tight estimations of the bit and phase error
rate on the qubit pairs are required. To accomplish the
estimation, Alice and Bob sacrifice the half of the ran-
domly chosen qubit pairs as the test bits, perform σz

measurement on the qubits, and exchange the outcome
by public channel. However, this test bits give the esti-
mation of only the bit error rate on untested qubit pairs.
For the estimation of the phase error rate, we use the fact
that the bit error and phase error will be correlated after
the filtering. This can be understood by looking at the
corresponding POVM. The POVM that corresponds to
the bit error rate can be written as Πbit = (|Γ11〉〈Γ11|+
|Γ01〉〈Γ01|)/2, where|Γ11〉 ≡ α|0x〉A|0x〉B − β|1x〉A|1x〉B
and |Γ01〉 ≡ β|0x〉A|1x〉B−α|1x〉A|0x〉B, while the POVM
that corresponds to phase error can be written as ΠPh =
α2|1x〉A〈1x| ⊗ |0x〉B〈0x|+ β2|0x〉A〈0x| ⊗ |1x〉B〈1x|, which
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FIG. 1: (a) The optimum key generation rate G and (b) The
optimum value of |〈ϕ0|ϕ1〉|2. In each figure, we assume that
the quantum channel is the depolarizing channel with loss.
The dotted line, the dot-dashed, and solid line represent the
case where L = 0, L = 0.2, and L = 0.5 respectively.

is not orthogonal to Πbit. By using this fact and the gen-
eralizing the estimation scheme involving nonorthogonal
states, we estimate the phase error rate given bit error
rate.

Thanks to the fact that we use the EDP based on
CSS after the filtering, we can use Shor and Preskill’s
method [7] to reduce the protocol described just above
into the B92 protocol. In the limit of the number of
qubits sent is infinity, the key generation rate G in the
B92 that is the probability that Alice and Bob share
the secret key per one pulse can be calculated by G =
ηfil[1 − h(ηbit) − h(ηph)]. Here, h(x) ≡ −x log2 x − (1 −
x) log2(1 − x) is the entropy function, ηfil, ηbit, and ηph

are the probabilities that filtering suceeds, bit error rate
on the filtered states, and phase error rate on the fil-
tered states, respectively. To illustrate the security per-
formance of the B92 protocol, we assign values to the
observable data as they would arise from a depolarizing
quantum channel with loss, i.e., the state ρ evolves into
L|V 〉〈V |+ (1− L)

[
(1− p)ρ +

∑
i=x,y,z σiρσi

]
, where

ketV is the vacuum state, L is the loss rate of quantum
channel, p is the depolarizing rate, and σi is the i com-
ponent of Pauli matrix. In Fig. 1 (a), we plot the key
generation rate optimized over |〈ϕ0|ϕ1〉|2 and in (b) the
optimum value of |〈ϕ0|ϕ1〉|2. From Fig. 1 (a), it is seen
that the B92 protocol as described here is secure up to
p ∼ 0.034 (in the case of L = 0), p ∼ 0.0225 (in the case
of L = 0.2), and p ∼ 0.012 (in the case of L = 0.5).

In summary, the B92 protocol can be regarded as an
EDP with a filtering process, and the filtering relates the
phase and bit errors to each other, which enables us to
estimate the phase error rate from the bit error rate.

This presentation is the extended version of the results
obtained in [11]. KT appreciates the warmth and hospi-
tality of Quantum Information Theory Group, Zentrum
für Moderne Optik in Germany.
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