Polarisation entanglement
from a symmetric solid state photon source

Yuan Liang Lim and Almut Beige

QOLS, Blackett Laboratory, Imperial College London, UK

Oxford, July 2003
Polarisation entanglement for quantum cryptography

Aim: to enable Alice and Bob to establish a completely random sequence of bits that is only known to them — a secret key.

Possible realisations: ¹,²

1. Alice keeps one photon, measures its polarisation and sends the other to Bob.
2. Bob obtains single photon pairs and measures their polarisation.

If both measure the same basis, the polarisations are highly correlated. About every second measurement leads to one new bit of the secret key.

² See also protocol by Bennett and Brassard (1984).
Already existing photon sources

Single photons:
- on demand: atom-cavity schemes\(^1\)
- quantum dots\(^2\)
- NV color centres in a diamond\(^3\)

Entangled photon pairs:
- atomic cascades\(^4\)
- parametric down conversion\(^5\)

\(^1\) Kuhn, Hennrich, Rempe, PRL \textbf{89}, 067901 (2002).
\(^3\) Kurtsiefer, Mayer, Zarda, Weinfurter PRL \textbf{85}, 290 (2000);
\(^4\) Aspect, Grangier, Roger, PRL \textbf{49}, 91 (1982).
Proposal for a new photon source

Common believe:

Photons can only be entangled if they have been created by the same source, as in parametric down conversion.

New observation:

Entanglement is also obtainable from different sources if several sources contribute to the detection of single photons.

Here: Interference effects exclude all paths where the photons have the same polarisation:

symmetry of the setup \Rightarrow maximally entangled photon pairs
Proposed experimental setup:

two atomic sources:
 two NV color centres
 in a diamond

weak laser fields:
coupling to both transitions

Bob’s detector:
in another direction
away from the source

Alice’s detector:
in a certain direction
away from the source

atomic level structure:

If Alice and Bob, both, detect a photon within a time interval Δt, then these photons are maximally entangled in polarisation.
Main disadvantage:

- The scheme is probabilistic:
 Alice and Bob have to compare the arrival times of detected photons via classical communication to identify the maximally entangled pairs.

Advantages:

- **Antibunching** between entangled photon pairs is guaranteed.
- **A stable laser source is not required:** Rabi frequency and frequency of the laser can even vary in time.
- **Relatively simple and robust experimental setup** (for example: two NV color centres in a diamond or trapped atoms)
The creation of entanglement

Hamiltonian: \[H = \hbar \sum_{i=1,2} \sum_{j=0,1} \sum_{k,\lambda} g_{k,\lambda}^{(j)*} e^{-ik\cdot r_i} e^{-i(\omega_0-\omega_k)t} a_{k,\lambda}^\dagger |j\rangle_{ii} \langle 2| + \text{h.c.} \]

Reset operator for single photon excitation: \(^{1,2}\)

- Excitation of a single photon in the mode \((k_0\hat{k}, \lambda)\) corresponds to a change of the state of the source from \(|\psi\rangle \) to \(R_{\hat{k}\lambda} |\psi\rangle \) with

\[R_{\hat{k}\lambda} = \sum_{i=1,2} \sum_{j=0,1} \text{constant} \cdot \left(\hat{D}_{2j} \cdot \epsilon_{\hat{k}\lambda} \right) e^{-ik_0\hat{k}\cdot r_i} |j\rangle_{ii} \langle 2| \]

- happens with the probability density \(I_{\hat{k}\lambda}(\psi) = || R_{\hat{k}\lambda} |\psi\rangle ||^2 \)

\(^1\) Schön, Beige, PRA 64, 023806 (2001); Beige, Schön, Pachos, Fort. Phys. 50, 594 (2002).

\(^2\) Beige, Pachos, Walther, PRA 66, 063801 (2002).
Basic idea:

We choose the position of Alice and Bob such that

\[R_{k\lambda}^{\text{Alice}} \equiv \sum_{j=0,1} \text{constant} \cdot (D_{2j} \cdot \epsilon_{k\lambda}) \left(|j\rangle_{11}\langle 2| + |j\rangle_{22}\langle 2| \right) \]

\[R_{k\lambda}^{\text{Bob}} \equiv \sum_{j=0,1} \text{constant} \cdot (D_{2j} \cdot \epsilon_{k\lambda}) \left(|j\rangle_{11}\langle 2| - |j\rangle_{22}\langle 2| \right) \]

- A photon detection by Bob changes the symmetry of the source.
- If Alice receives a photon, the symmetry of the source does not change.

Dicke states:

\[|s_{jk}\rangle \equiv \left(|jk\rangle + |kj\rangle \right) / \sqrt{2} \]

\[|a_{jk}\rangle \equiv \left(|jk\rangle - |kj\rangle \right) / \sqrt{2} \]
Combined level scheme of the atomic source:

Creation of a maximally entangled photon state if:

- Both, Alice and Bob, detect a photon within a time interval Δt.
- Laser excitation can be neglected within Δt (\sim antibunching).
- The positions of the detectors are chosen carefully.
Example:

- **initial state:** $|\psi\rangle|0_{ph}\rangle$

- **Bob** receives the **first photon:** $\rightarrow \sum_\lambda R_{k\lambda}^{\text{Bob}}|\psi\rangle|1_{\text{Bob},\lambda}\rangle/\| \cdot \|$

- **Alice** receives a **second photon:**

 $\rightarrow \sum_{\lambda'} \sum_\lambda R_{k\lambda'}^{\text{Alice}} R_{k\lambda}^{\text{Bob}}|\psi\rangle|1_{\text{Alice},\lambda'}\rangle|1_{\text{Bob},\lambda}\rangle/\| \cdot \|$

 \[= \left[(\hat{D}_{20} \cdot \epsilon_{k+}^{\text{Alice}}) (\hat{D}_{21} \cdot \epsilon_{k-}^{\text{Bob}}) |1_{\text{Alice},+}\rangle |1_{\text{Bob},-}\rangle
 - (\hat{D}_{21} \cdot \epsilon_{k-}^{\text{Alice}}) (\hat{D}_{20} \cdot \epsilon_{k+}^{\text{Bob}}) |1_{\text{Alice},-}\rangle |1_{\text{Bob},+}\rangle \right] |a_{01}\rangle/\| \cdot \| \]

 The detection of a "+" photon **should be as likely as** the detection of polarisation "-".
Main sources for errors

Emission from unwanted states within Δt due to laser excitation:

The laser fields might reexcite states within Δt. This might result in the detection of non-entangled photons.

This error is small if the laser excitation is chosen relatively weak.
Emission from unwanted states within Δt due to finite detector size:

Alice and Bob are placed in the minima and maxima of a quantum mechanical double slit experiment with two two-level atoms:\footnote{Eichmann, Berquist, Bollinger, Gilligan, Itano, Wineland, PRL 70, 2359 (1993).}

This error is in general small if the distance between the atomic sources is relatively small (of the order of a several wavelengths λ_0).
Efficiency of the source

The relative number of useful photons and their rate depends on:

- the **steady state population** in $|22\rangle$:

- the **minimum rate of non entangled pairs** that Alice and Bob accept (higher rates allow to increase detector sizes and laser strength)

- the **distance of the sources** and the **size of the detectors**
Final remarks

We proposed a new solid state photon source for quantum cryptography:

- Polarisation entanglement is obtained via interference effects.
- The setup is robust against parameter fluctuations...
 ... and hopefully relatively easy to realise.
- Quantum cryptography with this source requires a lot of classical communication but no storage of photons.
... thanks to the Royal Society and the GCHQ for a James Ellis Research Fellowship...