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EntanglementEntanglement

Entanglement
is a very complex phenomenon 

in big systems
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•Interesting feature: Limited sharing [CKW inequalities]
V. Coffman, J. Kundu, W. Wootters: Phys.Rev. A61 (2000) 052306



Classical CorrelationsClassical Correlations

• Correlation in quantum systems has two principal origins:

• Correlation induced by entanglement 

• Correlation due to statistical mixing

• More-partite entanglement fragments into bipartite correlation

• Problem with a suitable measure, that could be compared to 
concurrence

• Basic question: which bipartite entanglement and classical 
correlation configurations are allowed?



ForerunnersForerunners

• Entangled chains – long chain of entangled qubits
W. Wootters, quant-ph/0001114 (2000)

• Entangled webs – N qubits pairwise entangled 
M. Koashi, V. Buzek, N. Imoto Phys. Rev. A 62, 050302(R)-1–4 (2000).

• Entangled molecules – entanglement engineering on mixed 
states
W. Dur, Phys. Rev. A 63, 020303(R) (2001).

• No conditions on separability

• Classical correlation were not considered at all



Entangled GraphsEntangled Graphs

• Particle (qubit) = vertex

• Entanglement between 2 particles = edge

• NO edge implies NO entanglement

• The graph is defined by the number of qubits N and a set of edges S

• particle i and j are entangled

• k = |S| is the number of entangled pairs in the system

{ },i j S∈ ⇔



Mixed StatesMixed States

• For any specified graph, we search for a mixed state, which 
would be characterized by that graph

• Take a state

and make a mixture

• The concurrence is non-zero only for pairs 
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Pure StatesPure States

• In general, the problem is more complicated 

• Number of free parameters are limited in comparison to mixed 
state (               in comparison to              )

• The same approach as for mixed states (combination of Bell 
states) does not work

12 2n+ −

• However, we are able to formulate a theorem:

For each entangled graph there exists at least one 
pure state
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Martin Plesch a Vladimír Bužek, Entangled Graphs: Bipartite entanglement in multi-qubit
systems, Phys. Rev. A 67, 012322 (2003)
Martin Plesch a Vladimír Bužek, Entangled graphs, Quantum Information and 
Communication 2, 530-539 (2002).



Constructive ProofConstructive Proof
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• The concurrence is non-zero only for wished pairs and is 
determined by parameters of the state

• We use only a small, N2-dimensional part of the whole Hilbert 
space in comparison to the total dimension 2N

• The state vector can be shown to be:



Weighted Graphs for Pure StatesWeighted Graphs for Pure States

• Edges in graphs are weighted by concurrence

• Definitely not all graphs have representatives (CKW 
inequalities and) 

• If we post a strict condition for maximal concurrence
, we can show that 

For each weighted entangled graph, where
, there exists a pure statemaxijC C≤

max 0.24 /C N∼

M. Plesch, J. Novotný, Z. Dzuráková, V. Bužek, Controlling of bipartite entanglement in
many-partite states, sent to IOP
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• Concurrence:

• The state vector is:
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Weighted Graphs for Pure StatesWeighted Graphs for Pure States



Weighted Graphs for Pure StatesWeighted Graphs for Pure States

• Again, we use only the N2-dimensional part of the Hilbert space

• There exists a procedure to find      for given Cij

• We start with 

• Step by step we lower gammas to update the concurrence

• In every step, every concurrence is greater than or equal to the
desired concurrence (we approach the desired state from to top 
in the viewpoint of concurrence)

• After every step, gammas are smaller than before – the sequence 
is convergent

ijγ

max maxij ijC Cγ γ≡ → ≡



Classical CorrelationsClassical Correlations

• Given a state of N qubits, a pair of them is correlated, iff its 
density matrix is correlated

• A density matrix uncorrelation condition:

• There are three types of states of two qubits:

• Entangled pair – full line

• Correlated, but not entangled pair – dashed line

• Not correlated, factorized pair – no line

ij i jρ ρ ρ= ⊗



Graphs with Classical CorrelationsGraphs with Classical Correlations

• The graph is given by
• The set of entangled pairs SE

• The set of  correlated pairs SC

• For the definition of the state 
vector one needs to specify

• The number of qubits correlated with 
the ith qubit mi

• The total number of correlated pairs 
M

a) b) c) d)

e) f) g) h)

I) j)



Mixed StatesMixed States

• We can utilize the true classical correlation coming out of the 
classical uncertainty of the state

• The state space is big

• On the other side, uncorrelation condition is, in comparison to 
entanglement, very tight

• Still, we are able to proof, that

For each correlation graph there exists at least one 
mixed state

Martin Plesch a Vladimír Bužek, Entangled graphs II: Classical correlations in 
multi-qubit entangled systems, quant-ph/0306008, accepted in Phys. Rev. A



Constructive ProofConstructive Proof

• The state vector is

• Moreover, density matrices of individual qubits are identical
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Pure StatesPure States

• We know that not all 
graphs with “double” 
constraints can be realized 
by pure states

• The not-realizable graphs 
have a common property –
an open edge

a) b) c) d)

e) f) g) h)

I) j)



Pure StatesPure States

• In cases with more particles we are able to state only some 
general assertions 

Pure states for unconnected correlation graphs 
exist, if they exist for fragments of the graph



Pure StatesPure States

For each correlation graph, where every pair of qubits is 
entangled or correlated, there exists at least one pure state

No pure states exist for correlation graphs with an 
open edge

c) d) e) f)



ConclusionsConclusions

• We have proved a theorem of existence of all pure-state 
entangled graphs

• Theorem of existence of a class of pure-state weighted 
entangled graphs

• Theorem of existence of mixed-state correlation graphs

• Theorems of existence and non-existence of some classes of 
pure-state correlation graphs

• Problem numerically solved for 4 qubits (all ambiguous graph 
do exist)


