Implementing Quantum Noiseless Cooling

UH

or How to QuWinZip

Masahide Sasaki Yasuyoshi Mitsumori Atsushi Hasegawa Masahiro Takeoka Stephen Barnett Erika Andersson John Vaccaro

Communications Research Lab, Tokyo

U. Strathclyde, Glasgow

## Contents

- Review classical noiseless coding
  - Shannon entropy
- Quantum noiseless coding
  - von Neumann entropy
- Linear optical schemes
  - single photon 3 qubit circuit
- Experimental results
  - 3 qubits  $\rightarrow$  2 qubits  $\rightarrow$  3 qubits



## Classical noiseless coding

Shannon - 1948 IDEA: remove redundancy - make coded message as short as possible Message of letters: the quick brown... Source probabilities:  $P(\mathbf{a}), P(\mathbf{b}), P(\mathbf{c}), \dots, P(\mathbf{z})$ Shannon Entropy:  $H = -\sum_{n=1}^{\infty} P(n) \log_2 P(n)$ n=a.b.c..

 $\rightarrow$  Av. information (bits) carried by each letter



Shannon's noiseless coding th<sup>m</sup>: Encode message of K letters with  $K \times H$  bits as  $K \rightarrow 8$ 

Code common letters  $\rightarrow$  shortest code symbols

Equally likely letters: still his heart dared...  $P(\mathbf{a})=P(\mathbf{e})=P(\mathbf{i})=\ldots=P(\mathbf{t})$ 

Here

### $H = \log_2 N$

where N is the size of the alphabet e.g. if N=256, H=8 bits (no better than ASCII)  $\rightarrow$  No compression possible

## Quantum noiseless coding

Schumacher - 1995 Phys. Rev. A 51, 2738 (1995) Message of quantum states, e.g.  $\left|L^{(1)}\right\rangle \otimes \left|L^{(2)}\right\rangle \otimes \left|L^{(3)}\right\rangle \otimes \ldots \left|L^{(K)}\right\rangle$ If orthogonal letters - analysis is classical Long haul communication – weak coherent states - no longer orthogonal e.g.

Probability of each letter:  $P_a, P_b, P_c, ...$ 

## Average state of a letter: $\hat{\mathbf{r}} = P_a |L_a\rangle \langle L_a | + P_b |L_b\rangle \langle L_b | + P_c |L_c\rangle \langle L_c | + \dots$

Von Neumann entropy

 $S(\hat{\boldsymbol{r}}) = \operatorname{tr}(\hat{\boldsymbol{r}}\log_2 \hat{\boldsymbol{r}})$ 

Schumacher's quantum noiseless coding th<sup>m</sup> Code blocks of K letters:  $KS(\hat{r})$  qubits are sufficient to encode each block as  $K \rightarrow \infty$ 



Method: (1) project onto most likely subspace(2) code message with reduced qubits









# Linear optic circuit - 3 path qubits - 8 paths single photon

 $\boldsymbol{a}|0
angle\pm\boldsymbol{b}|1
angle$ 

optional delay for sign of  $\beta$ reflection coefficient  $\alpha^2$ transmission coefficient  $\beta^2$ 

1)









#### Fidelity measurement





#### Fidelity measurement









# Experimental Implementation

#### Using PBS to construct the path qubits







## Conclusion

