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Lecture 3: Measurement

Worked Examples

1. Define measurement and perfect measurement in words.

2. Let Â  and B̂  be observables.

(a) Prove that Â + B̂  is an observable.

(b) Prove that a necessary and sufficient condition for ÂB̂  to be an observable is that it

equal B̂Â .

(c) Prove that it is not always the case that to measure Â + B̂ , one can measure Â  and

B̂  and then add the outcomes.

(d) Prove that if ÂB̂  is an observable, there exists a way of measuring it that consists of

measuring Â , measuring B̂ , and then multiplying the outcomes together.

Note: In fact, though we have not proved it here, if ÂB̂  is an observable, any perfect

measurements of Â  and B̂ , followed by multiplying the outcomes together,

constitutes a perfect measurement of ÂB̂ .

3. We shall prove in the Worked Examples of Lecture 5 that despite 2(c) above,

Â B̂( )
2

= 0 implies that Â  and B̂  have the same value in all universes. On that

assumption, obtain a necessary condition that a process occurring during the period

0 < t < 1  constitutes a perfect measurement of Â(0) .

4. Verify the following properties of the outer product:

(a) The outer product of two Hermitian matrices is Hermitian.
(b) The outer product operation is associative.
(c) The outer product operation is not commutative.
(d) A B( ) C D( ) = AC( ) BD( )  (assuming that both sides exist).

5. Verify that the matrices X = I x , Y = I y , Z = I z  (with the unit matrix I I ) jointly

have the same algebra as the standard observables X̂(t) , Ŷ (t) , Ẑ(t)  of a qubit at any time t.

6. Suppose that two qubits are in a state such that at a given time, the Z-observable of the

second qubit is sharp at the value 1. Show that if Â1  is an arbitrary observable of the first

qubit at that time, Â1Ẑ2 = Â1 .



7. If Â  is a Boolean observable with spectrum a,b{ } , show that

2 Â a b

a b

is a measure of the sharpness of Â  that depends only on the probabilities of the outcomes of

a measurement of Â , not on the values a and b themselves.

8. Between times t = 0  and t = 1 a perfect measurement of the observable Ẑ1(0)  of qubit 1

takes place, and the outcome is stored in the observable Ẑ2 (1)  of qubit 2. Given that a
controlled-not gate has the following dynamics:

X̂1(t +1) = X̂1(t)X̂2 (t)

Ŷ1(t +1) = Ŷ1(t)X̂2 (t)

Ẑ1(t +1) = Ẑ1(t)

X̂2 (t +1) = X̂2 (t)

Ŷ2 (t +1) = Ẑ1(t)Ŷ2 (t)

Ẑ2 (t +1) = Ẑ1(t)Ẑ2 (t)

show, using the sharpness measure of Example 7, that

(a) Ẑ1(1)  is exactly as sharp or un-sharp as Ẑ1(0) .

(b) Ẑ2 (1)  is exactly as sharp or un-sharp as Ẑ1(0)  and Ẑ1(1) .

9. Suppose that the measurement of Example 8 is performed in a state where Ẑ1  is initially un-

sharp, so that neither Ẑ1  nor Ẑ2  is sharp at the end of the measurement:

(a) Show that Ẑ1Ẑ2  is un-sharp at the beginning of the measurement.

(b) Show that Ẑ1Ẑ2  is sharp at the and of the measurement.

10. Suppose that in the interference experiment analysed in Lecture 2, the Ẑ  observable of the
qubit is measured just after the photon passes through the first beam splitter. (In other
words, we measure which path the photon travels on.) Show that the interference
phenomenon no longer happens, and show that at the end of such an experiment, no
Boolean observable of either qubit is sharp.



Hints

1. (Define measurement and perfect measurement.) Measurements are physical processes.

2. ( Â + B̂  and ÂB̂ .)

(a) Observables correspond to Hermitian matrices.
(b) See 2(a).
(c) Consider the eigenvalues of those observables.

(d) Note that if Â  and B̂  commute, then they and ÂB̂  can all be expressed as functions
of a single observable.

3. (Condition for a perfect measurement.) Translate the answer to Example 1 into
mathematical form.

4. (Properties of the outer product.) Let matrix B have dimension m, and let its indices run
from 0 to m 1 . By the definition given in the Lecture, the a,b( ) 'th element of the matrix
A B  is

A B( )ab
= A a m , b m Ba mod m,b mod m .

5. (The matrices X = I x , Y = I y , Z = I z .) Use 4(d).

6. (Z-observable of the second qubit is sharp at the value 1.) Â1  and Ẑ2  commute because they
are observables of different systems at the same time. Hence the result of 2(d) applies.

7. (Measure of sharpness.) Express the expectation value of Â  in terms of its eigenvalues a

and b and the probability p that the outcome of a measurement of Â  will be a. Â  is
maximally sharp when p = 1  or p = 0  and minimally sharp when p =

1
2 .

8. (Perfect measurement propagates un-sharpness.) One can regard a perfect measurement of a
Boolean observable as the computation performed by a controlled-not gate. Use the result of
Example 6,

9. (Sharp observable at the end of a measurement of an un-sharp observable.) Use the
dynamical equations and the result of Example 6,



10. (Effect of measuring a qubit halfway through an interference phenomenon.) Use the
dynamics of the beam splitter and not gate, and the definition of interference, as in the
Worked Examples for Lecture 2, and regard the measurement process as the computation
performed by a controlled-not gate.



Answers

1. (Define measurement and perfect measurement.)

A measurement is a physical process in which an observable of one system at one time
comes to depend on an observable of another system at an earlier time.

A perfect measurement is defined by its effect in states in which the observable being
measured is sharp: it records sharp values accurately, and it leaves them unchanged.

2. ( Â + B̂  and ÂB̂ .)

(a) Consider the smallest system of which Â  and B̂  are both observables. There is a 1-
1 correspondence between the set of all observables of that system and the set of all

Hermitian matrices of a certain dimension. If Â  and B̂  are each Hermitian with that

dimension, than so is Â + B̂ , so it must be an observable of the same system.

(b) The Hermitian conjugate of ÂB̂  is ÂB̂( )
†

= B̂†Â†
= B̂Â , and so ÂB̂  is Hermitian if

and only if ÂB̂ = B̂Â  i.e. if Â  and B̂  commute. Hence ÂB̂  is an observable under
the same condition.

(c) Suppose that Â = X̂  and B̂ = 2Ŷ  where X̂  and Ŷ  are two of the standard

observables of a qubit. Then Â  and B̂  have eigenvalues ±1 and ±2 respectively. In

a state where Â = +1 , Â  is sharp and B̂  is un-sharp, so the result of measuring Â

and then B̂  and adding the results can be either -1 or 3. Similarly, in a state where

Â = 1 , the result of such a process can be either 1 or -3. Hence the process as a

whole, if it could be regarded as a measurement of a single observable, would have
four possible outcomes and so the observable would have to have at least four

eigenvalues. But Â + B̂ , being an observable of a qubit, cannot have more than two
eigenvalues. Hence that process does not constitute a measurement of it.

(d) If ÂB̂  is an observable then, from 2(b), Â  and B̂  commute. Therefore they are
diagonal in the same matrix representation. In that representation, let

 
Â = diag a(1),a(2),…,a(n)( )  and 

 
B̂ = diag b(1),b(2),…,b(n)( ) , where a and b are

real-valued functions, and define 
 
Ĉ = diag 1,2,…,n( ) . Evidently Â = a(Ĉ) ,

B̂ = b(Ĉ)  and ÂB̂ = f (Ĉ)  where f (x) a(x)b(x) . Hence one way to measure ÂB̂

is to measure Ĉ  and then compute the function f of the outcome. And one way of

doing that is to measure Ĉ  and to compute the function a of the outcome (the

process so far constituting a measurement of Â ), then to compute the function b of

the outcome (thus completing a measurement of B̂ ), and then to multiply the results
of those two processes.

3. Translating the answer to Example 1, using the given assumption, we obtain the following

necessary condition for a process to be a perfect measurement of Â(0)  during the period
0 < t < 1 :



There exists an observable B̂  such that whatever Â(0)  is,

Â(1) Â(0)( )
2

= 0  and B̂(1) Â(0)( )
2

= 0 .

4. (Properties of the outer product.) Let matrix B have dimension m, and let its indices run
from 0 to m 1 . By the definition given in the Lecture, the a,b( ) 'th  element of the matrix
A B  is

AB( )ab
= A a m , b m Ba mod m,b mod m .

(a) 

(b) 

Which are equal because of the following identities:

a n m a mn

(Proof: both sides are integers between a mn and a mn + 1 1 mn .)

a n mod m amod mn n

(Proof: by induction. As a increases, both sides increase when n a.)

amodn amod mn( )modn

(Proof: from the properties of modulo.)

(c) x I = diag(1,1, 1, 1) I x = diag(1, 1,1, 1).

(d) If both sides exist, the second index of A must have the same range as the
first index of C, and the same for B and D.

A B( )
†( )

ab
= A*

b m , a m B*
b mod m,a mod m

= A a m , b m Ba mod m,b mod m

= A B( )ab

A B( ) C( )
ab

= A B( ) a n , b n
Ca mod n,b mod n

= A
a n m , b n m

B a n mod m, b n mod mCa mod n,b mod n .

A B C( )( )
ab

= A a mn , b mn B C( )a mod mn,b mod mn

= A a mn , b mn B (a mod mn) n , (b mod mn) n C(a mod mn)mod n,(b mod mn)mod n ,



A B( ) C D( )( )
ac

= A B( )ab
C D( )bcb

=
b

A a m , b m Ba mod m,b mod mC b n , c n Db mod n,c mod n

AC( ) BD( )( )
ac

= AC( ) a m , c m
BD( )a mod m,c mod m

= A a m ,dCd , c m Ba mod m,eDe,c mod mde
,

and these become identical if we replace the double sum over d and e by a
single sum over b where d = b m  and e = bmod m .

5. (The matrices X = I x , Y = I y , Z = I z .) Using 4(d):

X 2
= I x

2
= I I;

XY = I x y = i I z = iZ;

and so on.

6. (Z-observable of the second qubit is sharp at the value 1.) Â1  and Ẑ2  commute because they
are observables of different systems at the same time. Hence the result of 2(d) applies, and it

is possible to measure Â1Ẑ2  by measuring Â1  and Ẑ2  separately and then multiplying the

outcomes. But since Ẑ2  is sharp with the value 1, this product necessarily equals the

outcome of measuring Â1 . Hence the expectation value of Â1Ẑ2  must be equal to that of Â1 .

7. (Measure of sharpness.) Let p be the probability that the outcome of a measurement of Â

would be a. Then Â = pa + (a p)b . Â  is perfectly sharp when p = 1  or p = 0  and

minimally sharp when p =
1
2 . The stated measure equals 2 p 1 , which is independent of a

and b, takes its maximum value of 1 when p = 1  or p = 0  and its minimum value of 0

when p =
1
2 .

8. (Perfect measurement propagates un-sharpness.) One can regard a perfect measurement of a
Boolean observable as a computation performed by a controlled-not gate with the target

qubit Ẑ2  initially sharp at the value 1.

(a) From the dynamical equations, Ẑ1(1) = Ẑ1(0)  and so they must be equally sharp.

(b) From the dynamical equations, Ẑ2 (1) = Ẑ1(0)Ẑ2 (0) , and so, from the result of

Example 6, Ẑ2 (1) = Ẑ1(0) . Hence, by the measure of Example 7, they are

equally sharp.

9. (Sharp observable at the end of a measurement of an un-sharp observable.)



(a) Since Ẑ1  is initially un-sharp and Ẑ2  is initially sharp at the value 1, the conditions

of Example 6 apply and the product observable Ẑ1Ẑ2  is un-sharp at that time.
(b) From the dynamical equations given in Example 8,

Ẑ1(1)Ẑ2 (1) = Ẑ1
2 (0)Ẑ2 (0) = Ẑ2 (0) . Hence the final expectation value of Ẑ1Ẑ2  is the

same as the initial expectation value of Ẑ2 , namely 1, and the measurement process

makes Ẑ1Ẑ2  become sharp with that value.

10. (Effect of measuring a qubit halfway through an interference phenomenon.) Let qubit 1 be
the one associated with the path of the photon, and qubit 2 be the one in which the outcome

of the measurement is stored. Qubit 1 starts in a state where Ẑ1(0) = 1, as in the

unimpeded interference experiment analysed in the Worked Examples for Lecture 2, and

qubit 2 likewise starts in the blank state Ẑ2 (0) = 1 . Hence, as before, we also have

X̂1(0) = Ŷ1(0) = X̂2 (0) = Ŷ2 (0) = 0 . The equations of motion for the beam splitter are

X̂1(t +1) = Ẑ1(t)

Ŷ1(t +1) = Ŷ1(t)

Ẑ1(t +1) = X̂1(t)

and the second qubit remains unaffected while the first qubit is passing through it, and so
we have:

X̂1(1) = Ẑ1(0)

Ŷ1(1) = Ŷ1(0)

Ẑ1(1) = X̂1(0)

X̂2 (1) = X̂2 (0)

Ŷ2 (1) = Ŷ2 (0)

Ẑ2 (1) = Ẑ2 (0)

If the measurement occurs between times 1 and 2, we have (from the controlled-not
dynamics given in Example 8):

X̂1(2) = Ẑ1(0)X̂2 (0)

Ŷ1(2) = Ŷ1(0)X̂2 (0)

Ẑ1(2) = X̂1(0)

X̂2 (2) = X̂2 (0)

Ŷ2 (2) = X̂1(0)Ŷ2 (0)

Ẑ2 (2) = X̂1(0)Ẑ2 (0)

Next (between times 2 and 3), the not gate acts on qubit 1, with dynamics

X̂(t +1) = X̂(t)

Ŷ (t +1) = Ŷ (t)

Ẑ(t +1) = Ẑ(t)

and so



X̂1(3) = Ẑ1(0)X̂2 (0)

Ŷ1(3) = Ŷ1(0)X̂2 (0)

Ẑ1(3) = X̂1(0)

X̂2 (3) = X̂2 (0)

Ŷ2 (3) = X̂1(0)Ŷ2 (0)

Ẑ2 (3) = X̂1(0)Ẑ2 (0)

Finally (between times 3 and 4), the second beam splitter acts on the first qubit. Hence

X̂1(4) = X̂1(0)

Ŷ1(4) = Ŷ1(0)X̂2 (0)

Ẑ1(4) = Ẑ1(0)X̂2 (0)

X̂2 (4) = X̂2 (0)

Ŷ2 (4) = X̂1(0)Ŷ2 (0)

Ẑ2 (4) = X̂1(0)Ẑ2 (0)

from which it follows (again from the result of Example 6) that Ẑ1  is maximally un-sharp at
the end of the experiment, and so the interference phenomenon has not happened.

Likewise, X̂1  and Ŷ1  and the three standard observables of qubit 2 are all maximally un-
sharp at the end of the experiment. And that implies that no Boolean observable of either
qubit is sharp at that time, because the expectation value of any linear combination of the
standard observables is then zero too, and by the measure 7, adding any multiple of the unit
observable to an observable does not change its sharpness.


