Properties of entanglement assisted channel capacity
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The BSST theorem states that the classical capacity of the entanglement-assisted channel is written as the form [1]

Cg(®) = max,, en,, S(pa) + S (2(pa)) = S(2 @ N)(|Ta)(Yasl)), (1)

where |U 45) is a purification of p4.
Holevo pointed out that there is a relationship between the entanglement-assisted and unassisted capacities [2],

C(®) < C(3) +logd, )

where d is the dimension of the Hilbert space H;,.

If the additivity of the classical capacity holds, we can replace C(®) by one-shot classical capacity x*(®). Since
Shor already proved that the classical capacity of the entanglement breaking channel is additive. So, for entanglement
breaking channel ®, we have

Cg(®) < x*(®) + logd. (3)

We can show that a tighter upper bound can be obtained for entanglement breaking channel, that is the following
upper bound is correct for entanglement breaking channel,

Cp(®) < logd. (4)

Comparing this relation with the general relation (3), we find that the term x*(®) does not appear here though it is
not always zero. So, we show there is an upper bound for Cg(®) when ® is an entanglement breaking channel. It
might be interpreted as, since the channel itself is entanglement-breaking, the prior entanglement may not help much
to increase the classical capacity.

Main results: Relationship between entanglement-assisted and one-shot unassisted capacities. Holevo
found entanglement-assisted channel capacity is upper bounded by the sum of logd and the unassisted classical
capacity as relation (2) [2]. If the classical channel capacity is additive which is a long-standing conjecture, then we
have the inequality

Cp(®) < X"(®) + logd. (5)

For an arbitrary quantum channel ®, if this relation does not hold, that means C(®) > x*(®), thus the additivity
conjecture of classical channel capacity does not hold. So, (5) may provide a criterion to test the additivity problem
of classical capacity. However, we can show relation (5) always holds for an arbitrary quantum channel ®. Thus we
eliminate one possibility to find a counter-example for the additivity of classical capacity. We assume that p, have
the following pure state decomposition

pa= Y q;| T ) (F]. (6)
J
Using the same technique as that of Shor [5], we define
[Wanc) =Y a1 ¥)i)sli)e- (7)
J

So, we have

(@ ® Ipc)(|¥anc)(¥ancl) Z\/ngj (1) (F)) ® i) s (5| © 7)o (7] (8)

With the help of the quantum entropy inequality, we obtain

$ (@ ® Inc)(1 ¥ anc) (T anc)) > > us CEALN)E (©)



We know

S (@@ D)(1Was)(Was)) = 5 (@ © D(1azc)(Tascl))., (10)

where both |¥4p) and |\iJABC) are purifications of p4. From BSST theorem (1), we have
Cp(®) < logd + X"(2). (1)

Thus we find a new relationship between the entanglement-assisted and one-shot unassisted capacities. If the additivity
of classical capacity holds, this relation is the same as the relation (2). If the additivity does not hold for classical
capacity, this relation is tighter than (2).

We can find the following properties of entanglement assisted channel capacity, some already appeared in [3], some
are new: 1,Quantum data processing inequalities for entanglement assisted channel capacity,

CE(NZ 0./\/1) Smln{C’E(/\fl),C’E(Ng)}, (12)

where N7 and N3 are two discrete memoryless quantum channels such that the input of A5 is the output of Aj.
2, The convexity of the entanglement assisted channel capacity is written as,

CE(ZPiM) < ZPiCE(M)- (13)

3, Suppose we have different optimal input density operators p’, € Hin for quantum channel N, that means the
channel capacity Cg(N) can be achieved by every input density operator p%, then the average density operator of p%
with arbitrary probability distribution p;, >, p; = 1, is also the optimal input state. Explicitly, we suppose

Ce(N) = 5(p}) + SN () — SNV @ I(1245){P4l)), (14)

where |®% 5) is the purification of p%. Then we should have the following result

CpN) = S(me’};) + S(N(meix)) — SNV ®I(|2aB)(®45l)), (15)

where |®4p) is the purification of ps = Zipipfa, i.e., pa is the optimal input state.
4, The entanglement assited classical capacity is additive. See Adami and Cerf PRA.

Crp(N1 ® N2) = Cp(N1) + Ce(N2). (16)
5, Relationship between entanglement assisted channel capacity with the Holevo bound with the help of results in [4],
CeW) = max S(pa)+ C{par}) = C{per})- (17)

where C({p%y,;}) = maxS(}, pipf“,l) =3, piS(ply) is the Holevo quantity in which the received signals are constrained
to lie in a set of quantum states p’;,, similarly for pg,, corresponding to the states of the enviornment.
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