Quantum walk on the line as an interference phenomenon
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‘We show that the quantum walk on the line is not a quan-
tum phenomenon in the sense that only wave properties are
needed for its understanding.

The quantum random walk (QW for short) concept
was first proposed ten years ago by Aharonov et al. [1]
as the quantum analogue of the classical random walk
(RW). As RWs are at the heart of some very efficient
classical algorithms, QWs are receiving much attention
(see [2] and references therein) in the hope of finding new
quantum algorithms that exhibit exponential or polyno-
mial speedup over their classical counterparts.

In a common version of the RW on the line, the
”walker” takes one step to the right or to the left ran-
domly depending on the result of tossing a coin. After N
steps, the probability of finding the walker at a distance
m from the origin is given by the binomial distribution,
a Gaussian for large N with variance v/N. In the QW,
the role of the coin is played by a qubit: the quantum
walker moves to the right or to the left depending on
the internal state of the qubit. After each displacement,
the state of the qubit is set to a superposition state by
means of a suitable unitary transformation, typically a
Hadamard, that plays the role of the toss of the coin in
the RW. The Hadamard entangles the position of the par-
ticle with the internal state of the coin—qubit. The prob-
ability distribution in the quantum case is very different
from the classical one: it resembles the Airy function and
has a variance that grows linearly with N: the quantum
walker walks quadratically faster than the classical one.
Moreover, the probability distribution is quite flat and
uniform in its central region.

What we demonstrate is that the QW is not quantum
in the sense that it can be understood as a classical wave
phenomenon. We do this in two ways: (i) we show that
the evolution of the walker on the line can be understood
by analogy to the propagation of a pulse in a dispersive
medium with third order dispersion; and (ii), we devise
optical implementations of the QW in an optical cavity.

As for the first approach, it is based on the derivation
of the continuous limit of the coined QW on the line.
We demonstrate that the probability amplitude for the
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walker be found at position £ at time 7 is approximately
governed by a differential equation of the form
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where A™ (£,7) are two fields that relate to the proba-
bility amplitudes of being at position m at time n, @m »,
through an, » = Af, , +(—1)" A,, ,,, this relation holding
separately for the two possible states of the coin. The so-
lution of this equation can be expressed in terms of the
Airy function. Eq.(1) describes the propagation of a light
pulse in a dispersive medium with third order group ve-
locity dispersion. Thus light pulses can implement the
continuous version of the QW by simple propagation.

As for the optical implementations in a cavity, we note
the simplest one: consider a ring cavity that contains
an electrooptic modulator (EOM) and a half~wave plate
(HWP) with its optic axis forming an angle 7/8 with re-
spect to the x axis. Consider a linearly polarized pulse,
with the field oscillating at an angle 7/4, injected in the
cavity. The EOM increases (decreases) in a cavity free—
spectral range the frequency of the z(y) polarization com-
ponent of the field. Then the light passes through the
HWP which performs a Hadamard transformation. The
process is then repeated every round trip. This is noth-
ing but the QW on the line: in this case the walker is the
field frequency and the light polarization plays the role of
the coin. We note that this is not only possible but has
indeed been actually implemented by Bouwmeester et al.
[3], in the context of the optical Galton board, without
the authors explicitly making this link to QWs.

The above results suggest that the QW on the line can
be understood entirely in terms of interference and can
be implemented classically.
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