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Introduction – Mathematical formulations of all the fundamental physical theories are
based on the concept of an abstract space. The structure of the space and the theories is char-
acterized in terms of its metric. For example, the Minkowski metric defines the mathematical
structure of the special theory of relativity and the Rieman metric defines the structure of the
general theory of relativity. What is a natural measure of distance for quantum theory? In par-
ticular, two metrics have been applied to the wide realm of quantum information processing:
Hilbert-Schmidt distance [1] and Bures metric which corresponds to fidelity [2].

A quantum state is a representation of our knowledge on individual outcomes in future
experiments. We can, then intuitively, say that the difference between this knowledge for
two quantum states measures how much the two states are close to each other with respect
to the future predictions. According to Bohr’s remark that “...phenomena under different
experimental conditions, must be termed complementary in the sense that each is well defined
and that together they exhaust all definable knowledge about the object concerned.”, the
closeness of two quantum states may be defined with regard to a complete set of mutually
complementary measurements. We require that such a measure of closeness between two
states is invariant under the specific choice of a complete set of mutually complementary
measurements.

Definition of operational measure of closeness – Consider two quantum systems of
the d-dimensional Hilbert space. In order to indicate how close their density operators ρ1 and
ρ2 are to each other, we consider a complete set of mutually complementary measurements
M = {mα} which are nondegenerate and orthogonal. Consider a measuring device set up
with the observable for measurement mα and let {m̂α,i} be the set of the eigen operators
and {pα,i = Tr(m̂α,iρ̂)} be the set of probabilities corresponding to the outcomes for a given
density operator ρ̂. The measurement is performed independently and equivalently for each
quantum system and its probability vector is denoted by ~pα(S) for system S. The distance of
the two probability vectors, ~pα(1) and ~pα(2), is defined as,

Dα(ρ̂1, ρ̂2) = |~pα(1) − ~pα(2)|2, (1)

where | · | is a vector norm. The distance Dα is called a single operational distance for measure-
ment mα belonging to the complete set of mutually complementary measurements. Intuitively,
in mutually complementary measurements, one complete knowledge implies maximal uncer-
tainty about the others. The total operational distance may be defined by summing single
operational distances over the complete set of complementary measurements:

Dtotal(ρ̂1, ρ̂2) =
∑
α

Dα(ρ̂1, ρ̂2). (2)
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Equivalence to Hilbert-Schmidt distance – The present geometric approach leads to
one of our main results that the total operational distance is equivalent to the Hilbert-Schmidt
distance, i.e.,

Dtotal(ρ̂1, ρ̂2) = ||ρ̂1 − ρ̂2||2, (3)

where || · || is a Hilbert-Schmidt norm. We remark some properties of the total distance Dtotal:
a) the total distance is invariant to the specific choice of a complete set of complementary
measurements, b) the total distance is equal to the Hilbert-Schmidt distance of the two op-
erators ρ̂1 and ρ̂2 in the Hilbert-Schmidt space B, and c) the total distance is bounded such
that 0 ≤ Dtotal ≤ 2.

Information distance – Brukner and Zeilinger [3] introduced the total information content
of a quantum system in the density operator ρ̂. Their measure can be written in the form of
the operational distance as

I(ρ̂) = N ||ρ̂− ρ̂r||2 (4)

where N is a normalization factor and ρ̂r = 1
d11 is a completely random state. Compared

to the operational distance (3), the total information content I(ρ̂) indicates the distance of
the quantum state ρ̂ from the completely random state ρ̂r. The more information a density
operator ρ̂ contains, the further it is away from ρ̂r. This find enables to interpret the total
operational distance as an information distance between two quantum states.

Comparison with fidelity – The fidelity, F = |〈ψ|φ〉|2, is the transition probability
between two pure states, |ψ〉 and |φ〉. When the fidelity is extended to incorporate mixed states
as F = (Tr

√√
ρ̂1ρ̂2

√
ρ̂1)2, its interpretation becomes vague in an operational perspective.

Instead, the fidelity may be indirectly interpreted in terms of statistical distance or “statistical
distinguishability” of finding the measurement that optimally resolves neighboring density
operators [4].

We compare the fidelity to the operational measure of distance. If the set of test and ref-
erence density operators are confined to pure states, the fidelity is equivalent to the total
operational distance in the sense that they have the monotonic relation. The total opera-
tional distance is, however, inequivalent to the fidelity as general mixed states are concerned
as the operational distance is not a montonic function of the fidelity but a function of three
independent quantities, the fidelity and purities of the states.

Conclusion – In summary, we proposed an operational measure to find how close two
quantum states are. This is defined with respect to a complete set of mutually complementary
measurements. It was shown that the operational measure is equivalent to the Hilbert-Schmidt
distance. The measure provides a remarkable interpretation as an information distance be-
tween quantum states. Equipped with the operational distance as a metric, the Hilbert space
reflects the information-theoretical foundations of quantum theory.
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