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Resonant energy (Forster-Dexter) transfer mechanisms [1, 2] have been observed in the sen-
sitized luminescence of solids, in quantum dots and in molecular nanostructures, and they also
play a central role in light harvesting processes in photosynthetic organisms. Here we give various
methods for creating entangled quantum states in quantum dots which use the two electrostatic
interactions that act between them: the Forster-Dexter interaction and the direct biexciton cou-
pling. We use the envelope function and effective mass approximations to calculate the magnitude
of these two electrostatic interactions as a function of dot size and shape, interdot separation,
material composition, confinement potential and applied electric field in a two-cuboid dot molecule
(see Fig. 1 (a)). The Schrodinger equation is solved by a direct expansion in the analytical eigen-
states of a closely related potential. The Forster interaction results from a dipole coupling of the
exciton states to the virtual photon field, and its strength is therefore proportional to the overlap
integral of the electron and hole envelope functions. Hence, we find that the Forster interaction
is suppressed by an applied electric field, which moves the electron and hole apart, resulting in a
smaller overlap (see Fig. 2). By contrast, the biexcitonic energy is increased by applying a field,
since it induces an excitonic polarization and a direct electric dipole-dipole coupling between the
dots (see Fig. 1 (b) and (c)).

In our first quantum logic implementation, we show that it is desirable to suppress the Forster
coupling and to create entanglement by manipulating the biexciton energy alone [3]. When the
interaction Hamiltonian is written as a matrix in the computational basis, the biexciton binding
appears as a diagonal term. In this case, quantum logic is most easily performed by using laser
pulses, tuned to the appropriate excitation frequencies of the coupled system. We show that
through careful selection of materials parameters high fidelity logic can be achieved. The second
implementation proposes generating quantum entanglement by modulating the off-diagonal Forster
interaction itself. This may be achieved by using a pulsed field to change the magnitude of the
interaction, or by altering the single exciton energies of the two dots by controlling their AC Stark
shifts. We also show that the energy transfer can be fast enough in certain dot structures that
switching can occur on a timescale which is much less than the typical decoherence times.

Refs. [4-6] have demonstrated that single dot decoherence times become dominated by re-
combination processes at low temperatures (2 K-25 K), with a negligible contribution from pure
dephasing. We account for these mechanisms by introducing the optical master equation of single
or interacting dots coupled to an environment of harmonic oscillator modes. We show that the
decay rates in the system are directly related to the off-diagonal interdot interaction strength and
can hence be modified in a similar way. We identify parameter ranges, for both quantum logic
implementations, in which the ratio of decoherence time to gate operation time is optimal.
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FIG. 1: (a) Schematic diagram of the cuboidal dot model. The potential inside the cuboids is set to zero, that
outside is determined by the band offsets of the conduction and valence bands within the heterostructure.
(b) Exciton dipole moment p; as a function of the dot size and applied electric field E for two dot shapes.
The dot parameters m, = 0.06, mj, = 0.6, V. = V}, = 500 meV. (c) Exciton-exciton binding energy (Vxx)
for a = b and sequence of dot shapes, size and field strength as in (b).
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FIG. 2: The electron-hole envelope function overlap integral O; as a function of FE for a range of dot sizes.
The left-hand figure shows the dependence for a cubic dot (a = h/2), and the right-hand figure shows the
dependence for a flatter cuboidal dot (a = 5h). Note that the overlap integral, and so also the Forster
interaction, is suppressed at large field as the electron and hole are forced apart.
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