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. 
The coding of messages is a fundamental issue in information theory.  Source coding entails coding common sequences 
of messages as short sequences of code letters, and uncommon sequences as long sequences.  Recently Schumacher 
derived the quantum version of the source coding theorem [1].  It is based on reducing the redundancy that occurs when 
the letter states are non-orthogonal.  For example, consider a message comprising the non-orthogonal letter states |ψa〉, 
|ψb〉, |ψc〉, … with corresponding probabilities Pa, Pb, Pc, … The quantum noiseless coding theorem states that by coding 
the quantum message into blocks of K letters, KS(ρ) qubits are necessary to encode each block in the limit K→∞, where 
S(ρ) is the von Neumann entropy of the density operator ρ = ΣPn|ψn〉〈ψn|. 
 
We use the example given by Jozsa and Schumacher [2] of an alphabet consisting of two, equally-likely letters |ψ±〉 in 
blocks of 3 letters, i.e. K=3.  Here |ψ±〉 = α|0〉 + β±|1〉 where |0〉 and |1〉 are an orthogonal computational basis, β± = ±β 
and α2+β2=1.  The state of an arbitrary block |B〉 is given by 
 |B〉 = |ψi〉⊗|ψj〉⊗|ψk〉 = α3|000〉 + α2(βi|100〉+βj|010〉+βk|001〉) + α(βiβj |110〉+βjβk |011〉+βkβi|101〉) + βiβjβk|111〉 
where i, j, and k ∈ {+, −}.  The set of possible block states span an eight dimensional state space H.  The compression 
entails first transforming with the unitary operator U, which maps two basis states as follows U|100〉 = |011〉, U|011〉 = 
|100〉 leaving the remaining computational basis states unchanged, and then projecting onto the state space Λ or its 
complement H−Λ.  Here the subspace Λ  is the four dimensional state space spanned by the states |000〉, |011〉, |010〉 and 
|001〉.  The likelihood of projecting onto H−Λ is proportional to β which can be made very small. 
 
The figure shows a linear optical implementation of this scheme.  

 

* 
β

β

α

000 

β
α PBS2 

D1 

D2 

D3

D4 

D5

A B

001 

010 
100 

011 
101 

110 
111 

000
001

010 
011

100
101 

110
111

α

D6 

D7 

PBS1 

..0 
..1 

β
αθ 1tan

2
1 −=  

π/2 π/2 

HT 

λ/2 wave plate 
beam splitter 
photodetector 

source 

 
The message block is encoded using a single photon to represent one polarization and two path qubits.  The encoding 
takes place to the left of the line marked A.  The polarization qubit is encoded at the first λ/2 wave plate and the path 
qubits are encoded by the various beam splitters. The horizontal and vertical polarization modes (oblique and vertical 
arrows, respectively) for each path are labelled by binary digits according to the basis states they represent.  The circuit 
shows the coding of all 3 qubits in the state |ψ+〉;  the state |ψ−〉 of any qubit is generated by introducing π phase shifts in 
appropriate paths.  In this idealised scheme, beam splitters with specific transmission and reflection coefficients (α2, β2) 
are used to define the path qubits.  In practice the experiment employs combinations of polarizing beam splitters and 
wave plates to adjust the amplitudes along various paths.  The unitary operation U is implemented by the polarizing 
beam splitter PBS2 , and the projection onto the ‘unlikely’ subspace H−Λ is realized by the detection of a photon by 
photodetectors D1 and D2.  The two optical paths and two polarization modes at B represent the message block coded 
using just 2 qubits.  In our experiment we decode the message by retroreflecting the light at the line B.  The beam 
splitter marked HT has a high transmission coefficient.  A retroreflected photon arriving at detector D7 indicates perfect 
fidelity of the coding and decoding circuits.  The actual average fidelity is determined by calculating the ratio of the 
number of photons detected by photodetector D7 and other photodetectors.   
 
We consider three different protocols corresponding to three different actions taken when the block state is projected 
into the ‘unlikely’ subspace H−Λ, and we present the results of recent experimental work. 
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