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Entanglement lies at the heart of quantum mechanics, and is profoundly important in quantum information theory.  The 
entanglement of distinguishable particles is an active research area, and recently attention has turned to the 
entanglement and correlation between indistinguishable particles.  In particular two, quite distinct, quantities have been 
introduced.  The first, as championed by Zanardi, we call entanglement of modes, and the second, following Paskauskas 
and You and others, we call the quantum correlation between two particles [1].  The entanglement of modes EM is 
simply determined by calculating the von Neumann entropy of the reduced density operator of one of the parties in the 
Fock representation. However, this measure overestimates the amount of entanglement between particles.  For example, 
a single particle shared between two parties in the state |1〉|0〉+|0〉|1〉 has an EM value of 1 ebit whereas there can be no 
entanglement of particles for a single particle.  In the case of quantum correlations, there is no notion of the location of 
the particles.  The quantum correlation measure is given in terms of the von Neumann entropy of the single particle 
density matrix, which makes no reference of the sharing of particles between parties at separated sites. 
 
In contrast, we introduce a new concept, the entanglement of indistinguishable particles EP shared between two 
separated parties.  Our definition of EP is operationally based in that EP quantifies the amount of entanglement that can 
be transferred to another system using local operations (LO), and thus it quantifies the amount of entanglement that can 
be used as a resource.  We consider only pure states |ψAB〉 for the particles shared between two parties, Alice and Bob.  
For genuine particles (such as electrons or Hydrogen atoms), as opposed to gauge bosons (such as photons), there is a 
conservation law that rules out the creation of superpositions of different number eigenstates. Thus we assume that the 
state |ψAB〉 of the indistinguishable particles contains exactly N particles. 
 
To fully use the entanglement they share, Alice and Bob must be able to arbitrarily measure and manipulate their local 
systems within their respective Hilbert spaces. Unless Alice's (and hence Bob's) state happens to have a definite particle 
number, this will mean violating the law of conservation of particle number. To be specific, say that in addition to all of 
the indistinguishable particles which Alice and Bob may use in the experiment, their quantum state |ψAB〉 includes a 
conventional quantum register each, initially in a product state. The operational definition of EP is the maximal amount 
of entanglement which Alice and Bob can produce between their quantum registers by local operations.  Since the 
registers of Alice and Bob consist of distinguishable qubits, this entanglement can be computed by the standard 
measure.  As a consequence of the particle number superselection rule, this entanglement will be given by  
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where trA(.) is the partial trace over Alice’s state space and S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy.  The 
density operator ρAB(n) is given by ρAB(n) = |ψAB(n)〉〈ψAB(n)| where  
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is the projection of the state |ψAB〉 by the projection operator Πn onto the subspace in which there are n particles at 
Alice's site (and N−n at Bob's).  Pn is the probability 〈ψAB|Πn|ψAB〉.   
 
To see this explicitly, imagine Alice and Bob perform the optimal LO protocol to change |ψAB〉 into the state |ψ ′AB〉 in 
which their registers have entanglement EP.  Alice could now measure her local particle number, and this would not 
affect EP .  But since the LO must conserve local particle number, this would be true even if Alice were to measure the 
particle number at her site before applying the LO protocol.  This measurement would collapse the state |ψAB〉 into the 
state |ψAB(n)〉 with probability Pn=〈ψAB|Πn|ψAB〉 where n is the measurement result. Now since this is a state of definite 
local particle number for both parties, there are no conservation laws that prevent local unitaries from transferring all of 
its entanglement, S[trA(|ψAB(n)〉〈ψ AB(n)|)], to the quantum registers.  To obtain EP as defined above, one simply 
averages over the result n.  
 
We show that (at least for bosons) our criterion for entanglement is stronger than both previous criteria, and even their 
conjunction. We prove a number of properties of our measure, and illustrate it with several examples.   
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