Simple criteria for projective measurements with linear optics
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We derive a set of criteria to decide whether a given projection measurement can be perfectly
implemented solely by means of linear optics. The derivation can be adapted to various detection
methods, including photon counting and homodyne detection. These criteria enable one to obtain
easily No-Go theorems for the perfect distinguishability of orthogonal quantum states with linear
optics including the use of auxiliary photons and conditional dynamics.

PACS numbers:

One of the goals of quantum communication is to pro-
vide a quantum solution to an otherwise unsolvable clas-
sical communication problem. An example is quantum
key distribution [1, 2]. Part of these solutions may be
sub-protocols which run entirely on the quantum level.
An example for this is quantum teleportation [3]. As
for the implementation of quantum communication pro-
tocols, light pulses are the optimal choice, traveling at
high speed through an optical fiber and allowing for an
efficient broadband encoding of the information.

Joint orthogonal projection measurements are an essen-
tial tool in quantum communication. The most promi-
nent example is the Bell measurement that is used e.g.
in quantum teleportation. The canonical way to perform
these measurements optically relies on signal interaction.
In discrete-variable implementations based on single pho-
tons, however, the required strong nonlinear optical inter-
actions are hard to obtain. Alternatively, it is a promising
approach to replace interaction by interference, readily
available via linear optics, and by feedback after detec-
tion. There are important cases, however, where linear
optics is not sufficient to enable perfect projective mea-
surements. For instance, a complete measurement in the
qubit polarization Bell basis is not possible within the
framework of linear optics including beam splitters, phase
shifters, auxiliary photons and conditional dynamics uti-
lizing photon counting [4]. Asymptotically, however, the
perfect projection onto an orthogonal basis can always be
approached via linear optics, though expensive resources
such as non-trivial entangled states of auxiliary photons
and conditional dynamics are needed then [5]. An im-
portant question is how the efficiency of the projection
measurement scales as a function of these resources [6].
In any case, No-Go statements always indicate whenever
cheaper resources and less sophisticated tools, such as a
fixed array of linear optics, are not sufficient for an arbi-
trarily good efficiency.

Here we propose a new approach to the problem of
projective measurements with linear optics and photon
counting. Since orthogonal states remain orthogonal af-
ter linear optical mode transformations, the inability of
perfectly discriminating orthogonal states is due to the
measurements in the Fock basis. In the new approach,
we replace the actual detections by a dephasing of the
(linearly transformed) signal states (see Fig. 1). In other
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FIG. 1: Dephasing approach to quantum state discrimination
via linear optics: the unitary transformation U of the input
modes due to linear optics with subsequent photon number
detection (on the left) is mimicked by turning the unitarily
transformed input states into mixtures of the possible pho-
ton number distributions via dephasing (on the right). The
output-state density operators after dephasing can be ana-
lyzed with respect to their distinguishability.

words, the detection mechanism is mimicked by destroy-
ing the coherence of the signal states and turning them
into mixtures diagonal in the Fock basis. With the re-
sulting density operators, the distinguishability is then
expressible in terms of quantum mechanical states. By
considering perfect distinguishability, this yields a hier-
archy of simple necessary and sufficient conditions for
a complete projection measurement onto an orthogonal

basis {|xx)},
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where ¢; are the components of the vector of the output
annihilation operators, ¢ = Ud, with a unitary matrix
U. The hierarchy breaks off for higher-order terms if
the number of photons in the states {|xx)} is bounded.
Hence, for finite photon number, we end up having a fi-
nite hierarchy of necessary and sufficient conditions for
perfect projective measurements. The states of an or-
thogonal set {|xx)} are perfectly distinguishable via a
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FIG. 2: Employing conditional dynamics and auxiliary pho-
tons, for instance, to distinguish two-qubit states: after the
first linear optical transformation U of all modes including
the auxiliary modes, detect one mode j and apply further
transformations to the remaining modes depending on the
mesaurement result for mode j.

fized array of linear optics represented by ¢ = Ud, iff
these conditions hold for any & # .

The subset of conditions referring only to a particular
mode operator ¢; represents necessary conditions for per-
fect discrimination based on conditional dynamics after
detecting that mode j (see Fig. 2). They are given by
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Moreover, one can show that for typical signal states
with fixed photon number, adding auziliary photons (see

Fig. 2) cannot provide perfect distinguishability, if there
is no first-order (n = 1) solution of Eq. (2) without them.

The proof of the No-Go theorem for the four qubit Bell
states [4] becomes very simple using only the first-order
condition of Eq. (2). It can be easily seen that this con-
dition has only trivial solutions, which proves the No-Go
theorem for the Bell states including auxiliary photons
and conditional dynamics. A similar No-Go theorem
for a set of nine separable two-qutrit states [9] can be
also easily reproduced using the first-order condition of
Eq. (2). Furthermore, new No-Go results can be found,
for instance, for an orthogonal set of four arbitrary non-
maximally entangled two-qubit states. In addition, the
classical distributions of the totally dephased states may
be analyzed with respect to their distinguishability in or-
der to make quantitative statements beyond the No-Go
theorems. Finally, the dephasing method is applicable to
other kinds of measurements too. One may also consider,
for example, homodyne detections, i.e., measurements
in a continuous-variable basis. The resulting criteria in
terms of the output quadratures of a linear-optics ar-
ray are satisfied, for instance, for the continuous-variable
Bell states with a simple 50 : 50 beam splitter. In fact,
in the case of a continuous-variable Bell measurement,
no No-Go theorem exists and arbitrarily good state dis-
crimination is achievable using a 50 : 50 beam splitter
[10].
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