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In order to use a collection of trapped ions for experiments where a well defined preparation
of vibrational states is necessary (for example, for quantum information processing), all vibrational
modes have to be cooled to ensure precise and repeatable manipulation of quantum states of internal
and external degrees of freedom of the ions. A method for simultaneous sideband cooling of all axial
vibrational modes is proposed. By application of a magnetic field gradient the absorption spectrum
of each ion is modified such that sideband resonances of different vibrational modes coincide. The
ion string is then irradiated with electromagnetic radiation of only a single frequency in the optical or
microwave regime for sideband excitation. This new cooling scheme is described with an analytical
treatment and investigated in detailed numerical studies.

I. INTRODUCTION

Atomic ions trapped in an electrodynamic cage allow
for preparation and measurement of individual quantum
systems, and represent an ideal system to investigate
fundamental questions of quantum physics, for instance,
related to decoherence [1, 2], the measurement process
[3, 4], or multiparticle entanglement [5]. Also, trapped
ions satisfy all criteria necessary for quantum computing.
Two internal states of each ion represent one elemen-
tary quantum mechanical unit of information (a qubit).
The quantized vibrational motion of the ions (the “bus-
qubit”) is used as means of communication between indi-
vidual qubits to implement conditional quantum dynam-
ics with two or more qubits [6]. The scheme for condi-
tional dynamics proposed in [6] requires cooling to the
ground state of vibrational motion in order to initialize
the bus-qubit. Other schemes have been proposed that
do not necessitate ground state cooling [7–9], yet still re-
quire low vibrational excitation of the ion string. Thus
cooling of the ions’ motional degrees of freedom is indis-
pensable for quantum information processing (QIP), and
whenever the well defined preparation of motional states
of a collection of ions is desired.

Among recent important experimental contributions
to laser cooling of trapped ions was the demonstration
of ground state sideband cooling of 2 Be+ ions [10].
The excitation of 5 out of 6 modes of two In+ ions has
been simultaneously reduced to mean vibrational quan-
tum numbers around unity using bichromatic sideband
cooling [11]. Two modes of a single ion have been cooled
simultaneously close to their ground state making use
of electromagnetically induced transparency [12], an ef-
fect taking advantage of light-induced atomic coherences.
The cooling of all modes of two ions far into the Lamb-
Dicke regime, robust against variations in experimental
parameters, has been demonstrated [13]. Here too, the
atomic absorption spectrum is optimally shaped for cool-
ing by two light fields inducing atomic coherences. It is
not required to resolve motional sidebands, and the laser
parameters used for cooling are at the same time suit-

able for efficient state selective detection of internal ionic
states.

It is necessary to cool not only the vibrational mode
used as a bus-qubit for QIP, but also other modes that
take no active role as bus-qubits (“spectator modes”),
since the Rabi frequency for transitions between internal
states of the ions depends on the motional state of all
modes and, thus, the precision of quantum logic opera-
tions is severely limited, if spectator modes are thermally
excited [14].

Sufficient cooling of the vibrational motion of two ions
in a common trap potential has been demonstrated ex-
perimentally as was outlined above. This is deemed to be
sufficient, even for a scalable quantum information pro-
cessor, if only two ions at a time are used for quantum
logic operations with additional ions stored in spatially
separated regions [15].

If more than two ions reside in a common trap poten-
tial and shall be used simultaneously for quantum logic
operations, however, the task of reducing the ions’ mo-
tional thermal excitation becomes increasingly challeng-
ing with a growing number of ions. The number of axial
vibrational modes in a linear ion trap is equal to the
number N of ions and cooling them all sufficiently repre-
sents a severe obstacle on the way towards using a larger
number of ions simultaneously for QIP.

Applying sideband cooling sequentially to each one of
the modes will leave little time for quantum logic op-
erations between cooling cycles. With many ions such
sequential cooling might not work at all, since after hav-
ing cooled the last one of N axial modes, the first one
may already be considerably affected by heating. There-
fore it is desirable to find new methods that allow for
simultaneous and efficient cooling of multiple vibrational
modes of many ions. Here, we propose a scheme where a
magnetic field gradient applied to an electrodynamic ion
trap is designed such that the first order red sidebands
of all axial vibrational modes nearly coincide, and thus
can all be sideband cooled by irradiating the ion string
only with a single frequency. Either laser light or mi-
crowave radiation can be used for sideband excitation to
implement this method for simultaneous cooling of many
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vibrational modes [9, 16].
The remainder of this article is organized as follows:

In section II the new cooling scheme is outlined. Cooling
of axial vibrational modes of a linear string of ions is in-
vestigated either using an optical Raman transition or a
microwave transition. In section III possible experimen-
tal implementations are discussed and the cooling scheme
is studied under imperfect experimental conditions again
with the aid of numerical studies. The analytical results
presented in previous sections are derived in section IV
before the is paper concluded in section V.

II. SIMULTANEOUS SIDEBAND COOLING OF
AXIAL VIBRATIONAL MODES

A. Axial vibrational modes

We consider N singly ionized ions in a trap potential of
cylindrical symmetry around the z−axis providing strong
radial confinement such that the ions are aligned along
this axis. For example, in a linear Paul trap [17] strong
radial confinement is achieved by applying an rf voltage
to the quadrupole electrodes while the weaker trapping
potential along the z−axis is generated by a dc voltage.
The radial and axial harmonic trapping potentials are
characterized by the secular angular frequencies νr À νz

and the typical axial distance between neighboring ions
is given by ζ02N−0.57 with ζ0 ≡ (e2/(4πε0mν2

1))1/3 [18].
Expanding the axial potential experienced by the ions

in such a trap up to second order in the ions’ displace-
ments leads to a Hamiltonian that describes N uncoupled
harmonic oscillators, the normal collective modes of vi-
bration of the ion string, [19]

H =
N∑

n=1

~νn(a†nan) . (1)

Here, a†n and an are the creation and annihilation oper-
ators decribing the axial normal modes characterized by
frequencies ν1 < ν2 < . . . < νN and normal conjugate
coordinates Qα, Pα (α = 1, . . . , N). The crystallized ions
are localized at about the classical equilibrium positions
z1, . . . , zN of the total potential comprised of the trap po-
tential and mutual Coulomb repulsion. For N ions with
same mass m and elementary charge e (the cas considered
in this paper) ν1 is equal to the axial secular frequency
νz of the harmonic trap.

The local coordinate qj (the deviation of ion j from its
equilibrium position zj ; j = 1, . . . , N) is obtained from
qj =

∑
α Sα

j Qα where Sα
j are the elements of the unitary

matrix Ŝ that transforms the dynamical matrix Â such
that ˆS−1ÂŜ is diagonal [19]. The normal modes are ex-
cited by displacing an ion from its equilibrium position zj

by an amount qj . Thus, the coefficients Sα
j describe the

strength with which a displacement qj from zj couples to
the mode α.

Exciting a vibrational mode can be achieved through
the mechanical recoil associated with the scattering of
photons by the ions. In what follows we consider two
internal states of each ion, |0〉 and |1〉, separated by ~ω0

in zero magnetic field. The linewidth of the |0〉 − |1〉 res-
onance is indicated by γ. The ions interact individually
with light [20, 21], and when their internal transition is
driven well below saturation, the contributions of scat-
tering from each ion to the excitation of the modes add
up incoherently [21]. An important quantity, scaling this
type of excitation, is the Lamb-Dicke parameter (LDP)
[22]. If a photon is scattered by the ion at zj and we
consider the excitation of the mode at frequency να, the
LDP reads [23]

ηα
j = Sα

j

√
ωR

να
(2)

Here, ωR = ~k2/2m is the recoil frequency, with ~k the
wave vector of the light.

The LDP ηα
j gives a measure for how likely the ab-

sorption or emission of photons is, if the electromagnetic
radiation driving the internal transition of an ion is tuned
to a frequency ω0 ± να. Tuning the driving radiation to
one of these sidebands makes it possible to (de-)excite
internal and external degrees of freedom of the ions si-
multaneously. In particular, absorption of a photon on
the red sideband ω0 − να results in the loss of a vibra-
tional quantum of mode α. In the remainder of this arti-
cle sideband resonances with excitation strength linear in
ηα

j are considered. The presence of sideband resonances
nonlinear in ηα

j does not affect the validity of the cooling
scheme proposed here.

B. Sideband cooling of an ion chain

Assuming that the internal transition of an ion is
driven under saturation by a laser with wave vector ~k,
and in the Lamb-Dicke regime, i.e. when the recoil fre-
quency is much smaller than the trap frequency νz, the
dynamics of the mode can be studied in perturbation
theory at second order in the parameter ωR/ν. A rate
equation for the population Pα(n) of a n-th excitation of
mode α can then be derived, and has the form [23]:

d
dt

Pα(n) = (n + 1)
[
Aα
−Pα(n + 1)−Aα

+Pα(n)
]

(3)

+n
[
Aα
−Pα(n)−Aα

+Pα(n− 1)
]

where Aα
+ (Aα

−) characterizes the rate at which the mode
is heated (cooled). For laser light at frequency ωL, cou-
pling with Rabi frequency Ωj to an internal transition at
resonance frequency ωj and linewidth γ, the rates have
the form

Aα
± =

N∑

j=1

|ηα
j |2

Ω2
j

2γ

[
γ2

4(δj ∓ να)2 + γ2
+ φ

γ2

4ν2
α + γ2

]

(4)
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where the detuning δj ≡ ωL − ωj . The coefficient φ
emerges from the integral over the angles of photon emis-
sion, according to the pattern of emission of the given
transition [22]. The average number of phonons of mode
α at steady state is then given by

〈n〉α =
Aα

+

Aα− −Aα
+

, (5)

and the rate at which this steady-state value is reached
is Wα = Aα

− −Aα
+ [23].

For a single ion, if γ ¿ ν and δ = νz, one gets
Aα
− À Aα

+ (sideband cooling) [22]. In this limit, the aver-
age phonon number at steady state is very small, and the
ion will be found in its motional ground state with high
probability. In the presence of many modes at different
(and incommensurate) frequencies, sideband cooling can
be used to cool simultaneously all modes to the ground
state. With the scheme outlined below this can be accom-
plished by shaping the excitation spectrum of the ions:
for each mode α there is one ion j with the matching res-
onance frequency, that is, such that δj = ωL − ωj = να.

In general, whenever the motion of an ion can be
sideband-cooled, so can the collective motion of an ion-
chain. This is valid also for atomic configurations that
do not have suitable transitions to directly apply side-
band cooling, as long as a multi-photon process can be
designed with an effective linewidth smaller than the trap
frequency [24].

C. Shaping the spectrum of N ions

If a magnetic field whose magnitude varies as a func-
tion of z is applied to a linear ion trap, then appropriately
chosen internal resonances of each ion will be Zeeman-
shifted, and the ions’ resonance frequencies ωj are no
longer degenerate. If the field gradient is designed such
that all first order red sidebands ω1−ν1, ω2−ν2, . . . , ωN−
νN corresponding to the axial vibrational modes coincide,
then all modes can be sideband cooled by irradiating the
ion string with electromagnetic radiation only at a single
frequency ω = ω1 − ν1. If the ions, initially prepared in
their lower internal state |0〉, are irradiated with electro-
magnetic radiation at this frequency, absorption can take
place if the vibrational quantum number of any of the N
modes is reduced by one. With appropriate recycling
of the population from state |1〉 this leads to sideband
cooling on all N modes simultaneously. This situation is
illustrated in Fig. 1 for the case of 10 ions: The thickest
horizontal lines indicate the ions’ resonance frequencies
ωj − ω1 relative to ω1 in units of the secular axial fre-
quency ν1 = νz. The center of each line indicates an
ion’s axial position in units of ζ0. The remaining lines
show the frequencies of the accompanying red sideband
resonances for each ion, ωj − ωα. The resonances where
j = α have been highlighted by medium thick lines. Here
the field gradient along the z-axis is chosen such that
ω1 − ν1 = ω2 − ν2 = . . . ωN − νN . Either laser light or

microwave radiation [16] can be used for sideband excita-
tion to implement this method for simultaneous cooling
of all vibrational modes.
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FIG. 1: With the absorption spectrum of a collection of ions
suitably modified, sideband cooling can be applied to cool all
axial vibrational modes simultaneously by irradiating the ion
chain at a single frequency ω = ω1 − ν1. Horizontal thick
lines indicate the ionic resonances ωj with j = 1, . . . , 10. The
other lines correspond to sideband resonances of each ion, ωj−
να. Medium thick lines emphasize the coinciding sideband
resonances where j = α. The center of each line shows the
position of ion j in scaled coordinates.

As an example, we will now discuss simultaneous side-
band cooling of a chain of 171Yb+ions. The ions are crys-
tallized along the axis of a linear trap, and a magnetic
field B(z) along the axis is applied that Zeeman-shifts the
energy of the internal states. The value of the field along
z is such that it shifts the red-sidebands of all modes
into resonance along the chain, while at the same time
its gradient is sufficiently weak to negligibly affect the
frequencies of the normal modes [9].

The selective drive of the motional sidebands can
be implemented on a magnetic dipole transition in
171Yb+close to ω0 = 12.6×2π GHz between the hyperfine
states |0〉 = |S1/2, F = 0〉 and |1〉 = |S1/2, F = 1,mF =
1〉. Due to the magnetic field gradient, the degeneracy
between the resonances of individual ions is lifted, and
the transition frequency ωj of ion j is proportional to
B(zj) in the weak field limit (µBB/~ω0 ¿ 1, µB is the
Bohr magneton). For strong magnetic fields the variation
of ωj with B is obtained from the Breit-Rabi formula [4].

Since spontaneous decay from state |1〉 back to |0〉 is
negligible on this hyperfine transition, laser light is used
to optically pump the ion into the |0〉 state via excitation
of the |1〉 = |S1/2, F = 1,mF = 1〉-|P1/2〉 electric dipole
transition. This laser light serves at the same time for
state selective detection by collecting resonance fluores-
cence on this transition, and for initial Doppler cooling
of the ions.
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The sideband transition between states |0〉 and |1〉 can
be driven by two laser light fields with appropriate detun-
ing (Raman transition), or directly using microwave ra-
diation. First we will consider the case when two-photon
Raman transitions are implemented to cool the ion chain.

D. Simultaneous sideband cooling using optical
radiation

0

1

2

Ω01

Ω12

Γ21 Γ20

∆12

∆Raman

FIG. 2: Sketch of the ionic 3-level scheme that has been used
for the subsequent calculations. Indicated are the relevant
Rabi frequencies (symbols Ω), spontaneous decay rates (Γ),
and detunings (∆).

Sideband cooling for 10 ions with mass 171 a.m.u.
has been numerically simulated by solving the optical
Bloch equations for a 3-level system as depicted in Fig.
2 [25, 26]. The two counter-propagating light fields close
to 369nm inducing Raman sideband transitions between
levels 0 and 1 have been taken far detuned from the reso-
nance between levels 1 and 2 such that spontaneous Ra-
man transitions are negligible compared to the stimu-
lated process. A third light field is tuned close to the
resonance 1-2 (369 nm) and serves as a repumper into
state 0. The spontaneous decay rates Γ21 = 11× 2πMHz
and Γ20 = 5.5× 2πMHz have been used in these calcula-
tions. The steady state temperature has been calculated
for each mode and the contributions from each ion are
summed incoherently.

Fig. 3a) displays the mean vibrational quantum num-
ber 〈n〉 in the steady state of the COM mode with angular
frequency ν1 = 1× 2πMHz as a function of the detuning
∆Raman = [(ωR1 − ωR2) − ω1] of the Raman light fields
with frequencies ωR1,R2 where ∆Raman = 0 corresponds
to driving the 0-1 ionic resonance. The Rabi frequency
Ω12 = 100 × 2πkHz and Ω01 = 5 × 2πkHz while the de-
tuning ∆12 is set to −10×2πMHz. Three resonances are
visible in Fig. 3a): the leftmost resonance corresponds
to the first ion and occurs at ∆Raman = −ν1 signify-
ing sideband cooling of the COM mode of the whole ion
chain. The cooling resonance in the middle stems from
the second ion while the one on the right is caused by the

third ion in the chain (compare Fig. 1 for the location
of the resonances). Heating of the ions’ motion occurs
when the detuning ∆Raman is chosen such that it coin-
cides with the blue sideband of the COM mode of the
first ion.

The steady state temperature of vibrational modes
characterized by ν1, ν2, ν3, and ν4 in Fig. 3b) has been
calculated using the same parameters as in Fig. 3a). The
resonances visible in this figure can again be identified
by comparison with Fig. 1. A common resonance oc-
curs at ∆Raman = −ν1 where all four vibrational modes
are cooled to low temperatures. The mean vibrational
quantum number 〈n〉 of all ten axial modes around this
resonance is displayed in Fig. 3c). For ∆Raman = −ν1,
〈n〉 reaches its minimum for all modes. Mode number 10
displays a relatively narrow resonance and is not cooled
as well as the other modes, since ion 10 participates only
little in the vibrational motion of mode 10 which is re-
flected in the parameter S10

10 having a small magnitude.
Still, mode 10 reaches a low temperature characterized
by 〈n〉 < 10−3. Fig. 3d) displays the temperature of
each mode when the detuning of the Raman beams is set
close to −ν1.

The new cooling scheme introduced here works well
when Raman sideband cooling is applied. In [16] it was
shown that with the application of a magnetic field gra-
dient an effective LDP arises that allows for coupling of
internal and external dynamics even when the usual LDP
is negligibly small. For instance, sideband cooling can be
used even when the internal transition (here 0-1) is driven
directly by long-wavelength radiation with which a small
LDP is associated. In the following paragraphs sideband
cooling using long wavelength radiation in the presence of
a magnetic field gradient will be discussed. With the help
of numerical calculations we will then investigate how ef-
fective simultaneous cooling of all vibrational modes can
be when microwave instead of optical radiation is used
to drive the 0-1 transition.

E. Sideband cooling using microwave fields

The recoil experienced by an ion upon absorption or
emission of a microwave photon is negligible. Instead, the
coupling between internal and motional degrees of free-
dom is due to the displacement of an ion from its equi-
librium position following the absorption of a microwave
photon: the magnetic field gradient modifies the mechan-
ical potential of the state |1〉, and the two internal states
experience different mechanical potentials [4, 9, 16]. In
the reference frame of the harmonic oscillator, an effec-
tive LDP can be defined [9]:

ηα
j
′eiϕj ≡ ηα

j + iη̃α
j (6)

where

η̃α
j
′ = Sα

j

∂zω
(j)
0 ∆zα

να
, (7)
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FIG. 3: a) Mean vibrational quantum number 〈n〉 as a func-
tion of the detuning ∆Raman when Raman sideband cool-
ing 10 ions. Ω12 = 100 × 2πkHz, Ω01 = 5 × 2πkHz,
∆12 = −10× 2πMHz. a) COM Mode (ν1). b) Modes number
1 through 4. c) Modes number 1 through 10. The shape of
the resonances due to modes 1, 2, 4, 6, and 7 is very similar.
d) 〈n〉 in steady state for each mode at ∆Raman = −ν1. All
ten vibrational modes are simultaneously cooled close to their
respective ground state.

and ∂zω0(zj) is the spatial derivative of the resonance fre-
quency with respect to z and ∆zα =

√
~/(2mνα). Since

in the microwave region ηα
j is much smaller than the sec-

ond term in eq. 6, we have ηα
j
′ ≈ η̃α

j .
The effective linewidth of the cooling process, which

sets the rate of cooling, is determined by the intensity and
detuning of the repump laser operated below saturation.
The recoil due to scattering of optical photons and in
presence of the field gradient is represented by the Lamb-
Dicke parameter λα

j , derived in section IV. Perturbation
theory of second order in the Lamb-Dicke parameter is
justified provided that |λα

j
′|, |ηα

j
′| ¿ 1.

With γ being the effective linewidth of the process, and
assuming the repumping laser orthogonal to the axis of
the motion (so that there is no contribution to the recoil
due to the absorption of laser photons) the rates derived
in section IV take on the the form

Aα
± =

N∑

j=1

Ω(zj)2

2γ

[
|η̃α

j |2
γ2

4(δj ∓ να)2 + γ2
(8)

+ φ|λα
j |2

γ2

4ν2
α + γ2

]

F. Simultaneous sideband cooling using microwave
radiation

Fig. 4a) shows the results of numerically solving the
optical Bloch equations as in section II D, that is, the
steady state mean vibrational quantum number 〈n〉 of
10 axial vibrational modes of a string of 10 ions at a
trap frequency ν1 = 2π × 1MHz as a function of the
detuning of the microwave radiation from the hyperfine
transition of ion 1. The same parameters have been used
as for generating Fig. 3. In Fig. 4b) the final excitation
number of all vibrational modes around ∆MW = −ν1 is
displayed, and Fig. 4c) shows the final mean excitation
of all 10 modes at ∆MW = −ν1.

All vibrational modes are cooled close to their ground
state as desired. The mode with the highest vibrational
frequency ν10 is not cooled as well as the other modes.
What is the origin of this behavior? The static field gra-
dient applied to the trap shifts the resonance of ion 10
such that its sideband resonance ω10−ν10 coincides with
the desired sideband resonances of the other ions, that
is, ion number 10 is used to cool vibrational mode num-
ber 10. However, ion 10 hardly participates in the mo-
tion of mode 10. This is evident in the small value of
S10

10 = 0.0018, and leads to a small effective LDP η10
10
′

(eq. 6) indicating the weak coupling between internal
states of ion 10 and vibrational mode 10.

The small value of the coefficient Sα
j with j = N = α

leads to a small LDP in the optical case, too, and con-
sequently to less effective cooling of mode N than of the
other modes. Despite this, using an optical Raman pro-
cess still gives more effective cooling, not only of mode
N but also of all other vibrational modes, than sideband
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FIG. 4: a) Mean vibrational quantum number 〈n〉 as a func-
tion of the detuning ∆Microwave when microwave transitions
are used for sideband cooling 10 ions. Ω12 = 100 × 2πkHz,
Ω01 = 5× 2πkHz, ∆12 = −10× 2πMHz. a) Survey spectrum
of vibrational modes 1 through 10. b) Modes 1 through 10
around ∆Microwave = −ν1. c) 〈n〉 in steady state for each
mode at ∆Microwave = −ν1. All ten vibrational modes are
simultaneously cooled close to their respective ground state.

cooling driven by microwave radiation. This is evident
from Figs. 3 and 4. The reason being that in the optical
case the real part of the LDP (eq. 6) dominates and is
considerably larger than the imaginary part caused by
the magnetic field gradient. When using microwaves the
real part of the LDP almost vanishes, due to negligi-
ble recoil imparted to the ions by microwave photons.
The imaginary part can in principle be made larger by
increasing the magnitude of the magnetic field gradient.
However, in order to superimpose the first order red side-
bands of all vibrational modes the magnetic field gradient

is fixed by the distance between neighboring ions which
in turn depends on the trap frequency νz (see also sec-
tion III). When doing quantum logic, or other operations
that require large coupling between internal and external
states, then the magnetic field gradient can be increased
such that the effective LDP reaches the desired magni-
tude [16].

The simultaneous cooling of all vibrational modes can
be combined with quantum logic operations using mw
radiation when alternating between periods of cooling
(small field gradient) and periods of doing quantum logic
(large field gradient). After cooling, the field gradient
has to be ramped up to the value needed for individ-
ual addressing of qubits. The gradient has to be varied
adiabatically, i.e. on a time scale large compared to the
period of vibrational motion, in order not to excite the
ion string’s motion.

With heating rates of the order 100ms as have been
observed experimentally [27], many quantum logic oper-
ations can be carried out before decoherence of motional
states sets in.

III. EXPERIMENTAL CONSIDERATIONS

In this section we discuss how the field gradients for si-
multaneous sideband cooling can be generated and how
cooling is affected by imperfectly superimposing the red
motional sidebands of different vibrational modes. In or-
der to demonstrate the feasibility of the proposed scheme
it is sufficient to restrict the discussion to very simple ar-
rangements of magnetic field generating coils.

If the vibrational resonances and the ions were equally
spaced in frequency and position space, respectively, then
a constant field gradient, appropriately chosen, could
make all N modes overlap and let them be cooled at
the same time. Since να − να−1 decreases monotonically
with growing α and the ions’ mutual distances vary with
j, the magnetic field gradient has to be adjusted along
the z−axis. The field gradient needed to shift the ions’
resonances by the desired amount is obtained from

∂B

∂z

∣∣∣∣
(zj+zj−1)/2

≈ B(zj)−B(zj−1)
zj − zj−1

!=
υj − υj−1

ζj − ζj−1
ζ0ν1

~
µB

, j = 2, . . . , N(9)

where ζj ≡ zj/ζ0 is the scaled equilibrium position of
ion j, and υj is the square root of the j−th eigenvalue
of the dynamical matrix. Eq. 9 describes the situa-
tion for moderate magnetic fields (the Zeeman energy
is much smaller than the hyperfine splitting), such that
∂zωj = 1/2 gJµB∂zB with gJ ≈ gs = 2 (state |0〉
does not depend on B). As an example, we consider
a string of N = 10 171Yb+ions in a trap characterized by
νz = 1× 2πMHz (ζ0 = 2.7µm).

The markers in Fig. 5 indicate the values of the re-
quired field gradient according to eq. 9 whereas the solid
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FIG. 5: Required magnetic field gradient to superpose the
motional red sidebands of ten 171Yb+ ions (markers) in a
trap characterized by a COM frequency ν1 = 1× 2πMHz and
calculated field gradient (solid line) produced by three single
wire windings (see text).

line shows the gradient generated by 3 single windings
of diameter 100µm, located at z = −100, 50, and 100
µm ≈ 36ζ0, respectively . Running the currents -5.33A,
-6.46A, and 4.29A through these coils produces the de-
sired field gradient at the location of the ions. Micro
electromagnets with dimensions of a few tens of microm-
eters and smaller are now routinely being used in experi-
ments where neutral atoms are trapped and manipulated
[28, 29]. Current densities up to 108A/cm2 have been
achieved in such experiments. A current density more
than two orders of magnitude less than was achieved in
atom trapping experiments would suffice in the above
mentioned example [30].

This configuration of magnetic field coils shall serve as
an example to illustrate the feasibility of the proposed
cooling scheme in what follows. It will be shown that
with a few current carrying elements in such a simple
arrangement one may obtain good results when simul-
taneously sideband cooling all axial modes. More so-
phisticated structures for generating the magnetic field
gradients can of course be employed, making use of more
coils, different diameters, variable currents, or completely
different configurations of current carrying structures

Fig. 6 shows the location (relative to ω1) of the j−th
red sideband resonance (corresponding to the j−th vi-
brational mode of the ion string) of the j−th ion, ωj−νj

with j = 1, . . . , 10. The height of the bars in Fig. 6 in-
dicates the strength of the coupling between the driving
radiation and the respective sideband transition relative
to the COM sideband of ion number 1. The relevant
coupling parameter is the LDP. For optical transitions
|ηj

j
′|/|η1

1
′| ≈ |ηj

j |/|η1
1 | = Sj

j ν
−1/2
j /S1

1ν
−1/2
1 whereas mi-

crowave transitions between the hyperfine states are char-
acterized by |ηj

j
′|/|η1

1
′| ≈ Sj

j ν
−3/2
j /S1

1ν
−3/2
1 (compare eq.

6 and eq. 2). The ratio of these parameters is much
smaller for the highest vibrational mode (j = 10) than
for other modes, since ion 10 is only slightly displaced
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FIG. 6: The positions of first order sideband resonances
corresponding to 10 axial vibrational modes of 10 171Yb+

ions in an ion-trap with the field gradient shown in Fig.
5. The height of the bars indicates the transition probabil-
ity of a given sideband relative to the first sideband of the
COM mode. a) Raman transition. The relative transition

probability is proportional to |ηj
j
′|/|η1

1
′| ≈ Sj

j ν
−(1/2)
j b) Mi-

crowave transition. The transition probability is proportional

to |ηj
j
′|/|η1

1
′| ≈ Sj

j ν
−(3/2)
j

from its equilibrium position when mode 10 is excited.
Ideally, all 10 resonances would be superimposed for

optimal cooling. The resonances shown in Fig. 6a) result
from the field gradient calculated using the configuration
described above for a trap frequency ν1 = 1 × 2π1MHz.
Even though they do not fall on top of each other, these
resonances all lie within a frequency interval of about
0.015× ν1 = 15kHz.

In Fig. 7a) the steady state vibrational excitation
〈n〉 of a string of 10 171Yb+ions at νz = 1 × 2πMHz
is displayed as a function of the detuning of the Raman
beams relative to the resonance frequency ω1 of ion 1.
The Rabi frequencies and detuning, too, are the same as
have been used to generate Fig. 3. However, the field
gradient that shifts the ions’ resonances is not assumed
ideal as in Fig. 3, instead the one generated by three
single windings as described above (Fig. 5) has been
used. Despite the imperfect superposition of the cooling
resonances, low temperatures of all modes close to their
ground state can be achieved as can be seen in Fig. 7b).
Here, the value of 〈n〉 for each mode has been plotted at
that detuning ∆Raman = −1.008ν1 where the sum of all
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FIG. 7: a) Steady state vibrational excitation for Raman cool-
ing. The field gradient used here is the one displayed in Fig.
5. a) 〈n〉 as a function of the detuning ∆Raman. Same param-
eters as in Fig. 3 b) 〈n〉 for each mode at that detuning where
the sum of the mean vibrational quantum numbers of all ten
modes is minimal. c) Wide range scan of ∆Raman with all
parameters unchanged except Ω12 = 1 × 2πMHz. d) Similar
to a) except Ω12 = 1× 2πMHz.
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FIG. 8: a) Similar to Fig 7b except Ω12 = 1× 2πMHz. b) 〈n〉
for each mode at that detuning where one of the modes (here
mode 10) reaches the absolute minimum.

excitations is minimal. Fig. 7c displays the excitation of
each mode over a wide range of the detuning such that
all first order (in ηα

j
′) resonances corresponding to red

sidebands are visible. Here, the Rabi frequency Ω12 of
the repump laser has been increased to 1 × 2πMHz as
compared to 100 × 2πkHz in the previous figures. This
results in broader resonances as is evident in Fig. 7d and
higher final temperatures. Setting the Raman beams to
a desired detuning and keeping their relative detuning
constant as a function of time is done by translating into
the optical domain the microwave or radio frequency that
characterizes the splitting of states 0 and 1 (using, for ex-
ample, acousto or electro-optic modulators). Microwave
or rf signals can be controlled with high precision and
display low enough drift to ensure efficient cooling. The
requirements regarding both the precision of adjustment
and the drift of the frequency source are further relaxed if
a large enough intensity of the repump laser is employed
(as in Fig. 7c and d). Fig. 8a shows 〈n〉 for each mode
similar to 7b, however with Ω12 = 1× 2πMHz.

Efficient cooling does not only occur around the reso-
nance ∆Raman = −ν1 but also at other values of ∆Raman

as can be seen in Fig. 7c. As an example, Fig. 8b shows
〈n〉 of all modes at that detuning where one of the modes
reaches the absolute minimum when ∆Raman is varied.
This is the case for mode 10 at ∆Raman = −3.91ν1. At
this resonance the red sideband of the 5th ion (the cen-
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ter ion) corresponding to the 10th mode is driven by the
Raman beams. All other vibrational modes are still rea-
sonably cold.
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FIG. 9: a) Steady state vibrational excitation as a function
of the detuning ∆MW when the sideband transition is driven
by microwave radiation. The field gradient used here is the
one displayed in Fig. 5. Rabi frequencies and detuning are
the same as in Fig. 4. a) 〈n〉 as a function of the detuning
∆Microwave. b) 〈n〉 for each mode at that detuning where
the sum of the mean vibrational quantum numbers of all ten
modes is minimal.

The data in Fig. 9a and b have been generated with
the same parameters as in Fig. 4, that is microwave
radiation is used to drive the sidebands of the hyperfine
transition 0-1. Since the effective LDP is much smaller as
compared to the optical case (see the discussion in section
II F), the resonances pertaining to the vibrational modes
are narrower, and the deviation of the real magnetic field
gradient from its ideal shape affects simultaneous cooling
more than in the optical case. Still, at ∆MW = −1.005ν1

all modes are reasonably cold. Already with such a ba-
sic setup of 3 coils generating the magnetic field gradient
effective simultaneous cooling of axial vibrational modes
can be implemented even using microwave radiation. Us-
ing more than 3 magnet coils will allow to shape the gra-
dient more accurately and thus allow for an even better
superposition of the sidebands.

For the cooling scheme introduced here to work, the
field gradient has to vary in the axial direction and it
remains to be shown in what follows that this variation
is compatible with the neglect of higher-order terms in qj

and ∂zB which is justified as long as |q2
j ∂2

zB| ¿ |qj∂zB|.

Using 9 and qj ≈ ∆z =
√
~/2mν1 this condition can be

written as

2
ζj+1 − ζj−1

∣∣∣∣
(λj+1 − λj)(ζj − ζj−1)
(λj+1 − λj)(ζj − ζj−1)

− 1
∣∣∣∣ ¿

ζ0

∆z
. (10)

Considering the region where the second derivative of
the field is maximal (n = 9) and inserting numbers into
10 gives for ten ions 0.24 ¿ 2.9 × 103(m/ν1)

1
6 . The

right-hand side of this inequality is dimensionless if m
is inserted in amu and yields ≈ 500 for 171Yb+ions and
ν1 = 1×2πMHz. Since the typical distance, ζ0 over which
the gradient has to vary is much larger than the range of
motion, qj ≈ ∆z of an individual ion, the approximation
of a linear field gradient is a good one.

IV. THEORETICAL MODEL

In this section, we introduce the basic equations, from
which the rates (8) have been derived.
We consider a chain consisting of N identical ions aligned
along the z-axis, and in presence of a magnetic field B(z).
The internal electronic states of each ion which are rele-
vant for the dynamics are the stable states |0〉 and |1〉 and
the excited state |r〉. The transitions |0〉 → |1〉, |1〉 → |2〉
are respectively a magnetic and an optical dipole transi-
tion. We assume that the magnetic moments of |0〉 and
|2〉 are zero, while |1〉 has magnetic moment µ, and its
energy with respect to |0〉 is therefore shifted propor-
tionally to the field, ~ω0(z) ∝ |B(z)|. The Hamiltonian
describing the internal degrees of freedom has the form:

Hint = ~
∑

j

(ω0(zj)|1〉j〈1|+ ω2|2〉j〈2|) (11)

where the index j labels the ions along the chain.
The collective excitations of the chain are described by

the eigenmodes at frequency ν1, . . . , νN , which are inde-
pendent of the internal states. Denoting with Qα, Pα the
normal coordinates and conjugate momenta of the oscil-
lator at frequency να, the Hamiltonian for the external
degrees of freedom then has the form

Hmec =
1

2m

N∑
α=1

P 2
α (12)

+
m

2

N∑
α=1

ν2
α


Qα +

~
2mν2

α

∑

j

∂ωj

∂zj

∣∣∣∣
z0,j

|1〉〈1|Sα
j




2

where we have neglected the higher spatial derivatives of
the magnetic field, as well as higher powers of the deriva-
tive of the field.
Thus, the coupling of the excited state |1〉 to a spatially
varying magnetic field shifts the center of the oscillators
for the ions being in the excited state.
The ions magnetic dipole transition is driven by a mi-
crowave field at Rabi frequency Ωµ and frequency ωµ.
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The interaction reads

Wµ =
∑

j

~Ωµ

2

[
|1〉j〈0|e−i(ωµt−kµzj+φ) + H.c.

]
(13)

where ~kµ is the wave vector of the field, and where we
have assumed that the spatial phase of the field is con-
stant over the extent of the ionic wave packet. This is
justified, since the displacement of an ion from its equilib-
rium position is many orders of magnitude smaller than
the microwave wavelength.
The transition |1〉 → |2〉 is driven under saturation by
a laser at Rabi frequency Ω12, frequency ω12, and wave
vector ~k. The interaction term reads:

W12 =
∑

j

~Ω12

2

[
|2〉j〈1|e−i(ω12t−kzj+φ)eikqj + H.c.

]

(14)
where qj is the displacement of the ion j from the classical
equilibrium position zj .
The master equation for the density matrix ρ, describing
the internal and external degrees of the ions, reads:

∂

∂t
ρ =

1
i~

[H, ρ] + Lρ (15)

where H = H0 + Hmec + Wµ + WL, and Lρ is the Li-
ouvillian describing the spontaneous emission processes,
i.e. the decay from the state |2〉 into the states |0〉 and
|1〉 at rates Γ20, Γ21, respectively, where γ = Γ20 +Γ21 is
the total decay rate. Here, we assume Γ20/Γ21 À 1 [31].

***In den numerischen Rechnungen unterscheiden sich
die beiden Raten um einen Faktor zwei. Kann das auch
hier bercksichtigt werden?

The Liouvillian aquires then the form:

Lρ = γ
∑

j

[
−1

2
|2〉j〈2|ρ− 1

2
ρ|2〉j〈2| (16)

+
∫ 1

1

d cos θN (cos θ)eik cos θqj |0〉j〈2|ρ|2〉j〈0|e−ik cos θqj

]

***Integrationsgrenzen?
In order to study the dynamics, it is convenient to

move to the inertial frames rotating at the field frequen-
cies. Moreover, we apply the unitary transformation

U = exp


−i

∑
α


 1

2mν2
α

∑

j

∂ω0,j

∂zj

∣∣∣∣
z0,n

|1〉j〈1|Sα
j


 Pα




(17)
We denote with ρ̃ the density matrix in the new reference
frame. The master equation now reads

∂

∂t
ρ̃ =

1
i~

[H̃, ρ̃] + Lρ̃ (18)

where H̃ = H̃0 + H̃mec + W̃µ + W̃12, and the individual
terms now have the form:

H̃0 = ~
∑

j

[δ(zj)|0〉j〈0|+ ∆(zj)|2〉〈2|] (19)

with δ(zj) = ωµ−ω0(zj) and ∆(zj) = ω2−ω0(zj)−ω12.
The mechanical energy is now

H̃mec =
1

2m

N∑
α=1

P 2
α +

m

2

N∑
α=1

ν2
αQ2

α

=
∑
α

~να

(
a†αaα +

1
2

)
(20)

where a†α, aα have been introduced, the creation and an-
nihilation operator, respectively of a quantum of energy
~να. The interaction term with the microwave reads

W̃µ =
∑

j

~Ωµ

2

[
|1〉j〈0|ei(kµzj−φ)e−i

P
α k̃α

j Pα + H.c
]

(21)
where

k̃α
j =

∂ω0,j

∂zj

1
2mν2

α

Sα
j (22)

Thus, the excitation between two states, where the
mechanical potential in one is shifted with respect to
the other, corresponds to an effective recoil, here de-
scribed by the effective Lamb-Dicke parameter η̃α

j =
k̃α

j

√
~mνα/2. Finally, the laser-interaction has the form

W̃12 =
∑

j

~Ω12

2

[
|2〉j〈1|eiχj ei

P
α(λαa†α+λ∗αaα) + H.c.

]

(23)
where χj is a constant phase, that depends on the posi-
tion

χj = kzj − φ− ~k
∑
α

k̃α
j Sα

j /2 (24)

and λα is an effective Lamb-Dicke parameter, which orig-
inates from the recoils due to the emission of an optical
photon and due to the force exerted on the atom by mak-
ing a transition from a potential to a shifted one,

***In welcher Beziehung steht λalpha zu ηα
j (eq. ??)?.

λα = −k̃α
j

√
~mνα

2
+ kSα

j

√
~

2mνα
(25)

In the Lamb-Dicke regime, which here must apply for
all recoils, and for low saturations on the optical dipole
transition, perturbation theory may be applied. Follow-
ing standard procedures [24], we obtained a rate equation
as in (3), which rates have the form (8).

V. CONCLUSIONS

If more than two ions at a time are to be used for exper-
iments that require control of the motional states of the
ions, for example quantum logic operations, it becomes
difficult to cool all vibrational modes sufficiently. We
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have introduced a new scheme for cooling the vibrational
motion of ions in a linear trap configuration. All axial vi-
brational modes are simultaneously cooled close to their
ground state by superimposing the red motional side-
bands in the absorption spectrum of different ions such
that each sideband, corresponding to a particular vibra-
tional mode, is excited when driving an internal transi-
tion of the ions with radiation at a single frequency. The
superposition of all first order (in the Lamb-Dicke param-
eter) red sidebands is achieved by applying a magnetic
field gradient along the trap axis shifting the internal
ionic resonances individually by a desired amount.

An analytic treatment of sideband cooling of a string
of ions in the presence of a magnetic field gradient has
been given and an explicit expression for the heating and
cooling rates has been derived.

Numerical studies have shown that simultaneously Ra-
man cooling all axial modes with this new scheme is ef-
fective for realistic sets of parameters characterizing the
driving radiation and the ion trap. These studies have
also revealed that using microwave radiation to drive the
sideband transition is not as effective, due to the rela-
tively small field gradient required to superimpose the
sidebands, but still sufficiently low temperatures can be
reached.

When using microwave radiation the photon recoil
upon absorption or emission of radiation possibly (de-
)exciting the vibrational motion of the ion string is neg-
ligible. Instead, the displacement of the equilibrium po-
sition of an ion in a magnetic field gradient conditioned
on its internal state leads to a coupling between internal
and external dynamics. The strength of this coupling
is described by a new effective Lamb-Dicke parameter
that is proportional to the magnetic field gradient. For
the newly introduced cooling scheme, the field gradient

is used to superimpose the motional sidebands, and thus
can not be freely chosen (it is determined by the mu-
tual distance between the ions and other restraints). The
relatively small value of the gradient required for simul-
taneous cooling of all axial modes makes the coupling
between internal and external states less effective. This
is reflected by a small effective LDP in the microwave
regime.

When implementing quantum logic operations using
microwave radiation it is desirable to have stronger cou-
pling between internal and external states, that is, a
larger field gradient. Also, it may not be advantageous to
address all motional sidebands with a single frequency for
conditional quantum dynamics with several ions. There-
fore it is useful to ramp up the field gradient to a value
where all coincidences between internal and motional res-
onances are removed [16] after initial cooling of all vibra-
tional modes. This should be done fast enough not to al-
low for appreciable heating of the ion string, for example,
by stray fields, and slow enough not to excite vibrational
modes in the process. A lower limit for the time it takes
to ramp up the gradient seems to be 2π/ν1 and the up-
per limit is set by the time needed to heat up the string
of ions. The latter is determined by a particular trap
setup and has been measured to take as long as 100ms
[27]. Heating of high vibrational modes is expected to
be even slower, since for the excitation of differential mo-
tion of the ions, fields are required that reverse sign over
a distance comparable to the inter ionic spacing.

If usual schemes employing optical radiation for ma-
nipulating internal and external degrees of freedom of
trapped ions are used, then the field gradient maybe
turned off adiabatically after cooling the vibrational
modes.
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