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Geometric phase in open systems
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We calculate the geometric phase associated to the evolution of a system subjected to decoherence
through a quantum-jump approach. The method is general and can be applied to many different
physical systems. As examples, two main source of decoherence are considered: dephasing and
spontaneous decay. We show that the geometric phase is completely insensitive to the former, i.e.
it is independent of the number of jumps determined by the dephasing operator.
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The generalization of the geometric phase [1, 2, 3] as-
sociated to the evolution of a system in a mixed state sce-
nario is still an open problem. There have been various
proposals tackling the problem from different perspec-
tives like, for example, via state purification [4], through
an interferometric procedure [5], or for dissipative sys-
tems [6]. In most of the cases these definitions do not
agree on account of different constraints imposed, namely
different generalizations of the parallel transport condi-
tion.

In this paper, we approach the problem of mixed states
geometric phases in open quantum systems through the
quantum jumps method [7, 8] (for alternative methods
see [9, 10, 11]). We show that, in general, it is possi-
ble to define and calculate a geometrical phase for an
open system, which can even be robust against decoher-
ence, as, for example, it is the case for purely diffusive
reservoirs. As an illustration of our method, we calculate
Berry’s phases for a spin 1/2 in contact with different
reservoirs.

The quantum jumps model proves to be particularly
suitable for the case of geometric phases because in each
particular trajectory the quantum state of the system re-
mains pure (if initially pure). The non unitary evolution
of the system and mixed states are recovered when aver-
aging over all possible trajectories. Therefore, we avoid
the problem of finding the proper parallel transport con-
dition, which is very well defined for unitary evolutions.

Let us take a system evolving according to the follow-
ing general master equation (~ = 1):

ρ̇ =
1

i
[H, ρ] − 1

2

n
∑

k=1

{Γ†
kΓkρ+ ρΓ†

kΓk − 2ΓkρΓ
†
k}, (1)

For a small time interval ∆t, we can describe the time
evolution of the density matrix by

ρ(t+ ∆t) ≈
n

∑

k=0

Wkρ(t)W
†
k , (2)

where W0 = 1l − iH̃∆t and Wk =
√

∆tΓk (k ∈
{1 . . . n}) are called the “no-jump” and jump operators

respectively. H̃ is a non-Hermitian Hamiltonian, given
by:

H̃ = H − i

2

n
∑

k=1

Γ†
kΓk. (3)

Note that the operators Wk fulfill the completeness rela-
tion

∑n
k=0W

†
kWk = 1l.

In this description, the dynamics of the system is ap-
proximated by dividing the total evolution time T into a
sequence of discrete intervals ∆t = T

N . According to
Eq. (2), the state of the system, after any time step

tm = m∆t, evolves into ρ(tm+1) = Wkρ(tm)W †
k (up to

first order in ∆t), with probability pk = TrWkρ(tm)W †
k .

For example, an initial (t = 0) pure state ψ0 would
evolve, after the first time interval, into the (not nor-
malized) state |ψ0〉 → |ψ1〉 = Wk|ψ0〉 with probability

pk(t1) = 〈ψ0|W †
kWk|ψ0〉.

The time evolution of the system is, then, calculated
for a set of possible trajectories containing, each one of
them, different numbers of jumps, occurring at different
times, i.e. each trajectory is defined as a chain of states
obtained by the action of a sequence of operators Wk on
the initial state. For example, for an initial pure state
|ψ0〉, the (non-normalized) state of the system, after the
m-th step, along the i-th trajectory, is given by:

|ψ(i)
m 〉 =

m
∏

l=1

Wi(l)|ψ0〉, (4)

where i(l) stands for the l-th element of a sequence of
indexes with values belonging from 0 . . . n. Each trajec-
tory, then, is represented by a discrete sequence of pure

states {ψ0, ψ
(i)
0 , . . . , ψ

(i)
N }. The dynamics given by the

master equation is recovered by summing incoherently
all the states associated to each trajectory, and taking
the continuous limit ∆t→ 0.

The fact that a pure state remains pure in each trajec-
tory, in the quantum jumps method, is very useful in our
case, since it is known that, given a chain of pure states
{|ψ1〉 . . . |ψN 〉}, the geometric phase associated to them
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is given by the Pantcharatnam formula [12]:

γg = − arg {〈ψ1|ψ2〉〈ψ2|ψ3〉 . . . 〈ψN−1|ψN 〉〈ψN |ψ1〉} (5)

Therefore, we are able to associate a meaningful geomet-
rical phase to each trajectory “i” described by the sys-
tem, as the continuous limit of Eq.(5) for the sequence

{ψ0, ψ
(i)
0 , . . . , ψ

(i)
N }.

As an example, let us consider the ”no-jump” trajec-
tory for a completely general master equation. The evolu-
tion of a quantum state along this trajectory is obtained
by the repeated action of the operator W0. At the time
t = m∆t, the quantum state will be approximately given
by:

|ψ0
m〉 = (W0)

m|ψ0〉 =

(

1l − i
T

N
H̃

)
N

T
t

|ψ0〉. (6)

which in the continuous limit N → ∞ yields to a dy-
namics governed by the complex effective Hamiltonian
H̃ :

i
d

dt
|ψ0(t)〉 = H̃ |ψ0(t)〉 |ψ0(0)〉 = |ψ0〉 (7)

Thus, the evolution corresponding to this trajectory is
given by a smooth chain of (non normalized) states |ψ(t)〉,
in which case γN converges to:

γ = −Im
∫ T

0

〈ψ(t)| d
dt |ψ(t)〉

〈ψ(t)|ψ(t)〉 dt− arg{〈ψ(T )|ψ(0)〉}. (8)

Substituting Eq. (7) into Eq.(8), we obtain the geometric
phase for a no-jump trajectory, which is given by:

γ0 =

∫ T

0

〈ψ0(t)|H |ψ0(t)〉
〈ψ0(t)|ψ0(t)〉 dt− arg{〈ψ0(T )|ψ0(0)〉} (9)

This is the geometric phase associated to a non-unitary
evolution of a system [12, 13], when there are no jumps.
The first term is clearly the opposite of the dynamical
phase associated to the non-unitary evolution, as it is
given by the average of the Hamiltonian (up to a minus
sign) along the path traversed by the system. The second
term is the total phase difference between the final and
the initial state, according to Pancharatnam’s definition
of distant parallelism [1]. Thus the geometric phase is
obtained as the difference between total and dynamical
phase associated to a given evolution of pure states [12].

Note that, in the special case in which
∑n

i=1 Γ†
iΓi ∝ 1l

(which is a unital evolution), the geometric phase associ-
ated with the no-jump trajectory is the same as the one
acquired by an isolated system evolving under the same
HamiltonianH . This becomes clear when one notes that,
in this case, W0 = (1 − α)1l + iH∆t and the evolution
of state |Ψ(t)〉 is the same as its isolated counterpart up
to a global normalization factor e−αt. In other words,
for this particular source of decoherence, if the reservoir

is permanently measured and no jump is detected, there
is no gain of information on the system, which simply
projects it back into its unitary evolution.

Note, also, that following the idea of [14], it is possible
to represent the geometric phase (9) as the integral of
the Berry connection form:

dω = Im
〈ψ(t)|d|ψ(t)〉
〈ψ(t)|ψ(t)〉 (10)

along a closed path. This path is formed by the trajec-
tory ψ(t) followed by the states along the Hilbert space
during the dynamical evolution and the shortest geodesic
connecting final and initial states ψ(T ) and ψ(0). Thus
the second term of equation (9) can be regarded as the
path integral of the Berry connection along this geodesic.

Suppose, now, that there is only one jump in the tra-
jectory at an arbitrary time t1, which occurs in a time
much shorter than any other characteristic time of the
system. Then, we can separate the evolution in two parts
(before and after the jump) and, the continuous limit of
equation (5) leads to the following expression:

γ1
j =

∫ t1

0

〈ψ′

(t)| d
dt |ψ

′

(t)〉
〈ψ′(t)|ψ′(t)〉 dt− arg{〈ψ′

(t1)|Γj |ψ
′

(0)〉} +

∫ T

t1

〈ψ′′

(t)| d
dt |ψ

′′

(t)〉
〈ψ′′ (t)|ψ′′(t)〉 dt− arg{〈ψ′′

(T )|ψ′

(0)〉} (11)

where Wj is the operator associated to the occurred

jump, and ψ
′

(t) and ψ
′′

(t) are the states evolving under
the effective Hamiltonian H̃, before and after the jump
respectively. They are given by the equation (7) with
initial conditions ψ

′

(0) = ψ0 and ψ
′′

(t1) = Wjψ
′

(t1),
respectively.

The first and third term represents the dynamical
phase given by the effective evolution (7), before and af-
ter the jump occurs. The last term is the phase difference
between initial and final state of the total evolution. The
second term is a phase associated to the occurrence of
a jump at time t1. Analogously to the total phase as-
sociated to final and initial state, this term represents
the phase difference between the states after and before
the jump, and geometrically, it can be regarded as the
path integral of the Berry connection along the shortest
geodesic joining them.

This result can be easily generalized to any trajectory,
allowing for a more complicate sequence of jumps and
no-jump evolutions. The geometric phase is then repre-
sented as the sum of terms of the form arg 〈ψ(ti)|Γj |ψ(ti)〉
regarded as the phase associated to the jump Γj occur-
ring at the instant ti, and terms of the form (8) for the
no jump evolutions. And clearly all these phases can
be regarded as the integrals of Berry connection along a
complex path composed of geodesics joining initial and
final state of the jumps, and the paths traversed by the
state during the evolution under H̃.
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Let us apply this general quantum jumps procedure
to a well known physical system. First, let us consider
the simplest example of decoherence: a two levels sys-
tem evolving under the free Hamiltonian H = ω

2 σz and
subjected to dephasing, which can be described by the
Master equation (1) with Γ = λσz , where λ is the the co-
efficient giving the probability per unit time of a “phase-
jump”.

Since this is a decoherence model for which Γ†Γ =
σ2

z ∝ 1l, which is a simple instance of a unital evolu-
tion, according to the previous considerations, the geo-
metric phase associated to the no-jump case is given by
the standard geometric phase associated to the unitary
evolution of a spin 1/2 linearly coupled to a constant
magnetic field. For instance, after a time t = 2π/ω,
γ0 = π(1 − 〈ψ0|σz|ψ0〉) = π(1 − cos θ), where ψ0 is the
initial state and θ is its azimuthal angle in the Bloch
sphere representation.

Although the no-jump case may seem trivial, this sys-
tem has a much more remarkable property: the geometric
phase is actually robust against dephasing, in this sim-
ple, but very useful example. In fact, we show below that
the final geometric phase is unaffected by any number of
jumps for any particular trajectory. To show that, Let
us consider first the case of a single jump, in which the
phase is given by:

γ1 = −
∫ t1

0

ω

2
〈ψ0|σz|ψ0〉dt− arg{〈ψ0|σz |ψ0〉}

−
∫ 2π/ω

t1

ω

2
〈ψ0|σz|ψ0〉dt

− arg{〈ψ0|ei σz

2
(2π−ωt1)σze

i σz

2
ωt1 |ψ0〉}

= π(1 − 〈ψ0|σz|ψ0〉) = π(1 − cos θ),

where the fact that H and Γ commute has been used.
This result is easily generalized to any number k of jumps:

γk = −
∫ 2π/ω

0

ω

2
〈ψ0|σz |ψ0〉dt− arg{〈ψ0|σz |ψ0〉k} −

− arg{〈ψ0|eiσzπ(σz)
k|ψ0〉} = π(1 − cos θ),

Thus, no matter how many jumps occur in the chosen tra-
jectory, we can associate the same geometric evolution to
the system. There is a simple geometrical explanation for
this effect. Dephasing is a special source for decoherence
because it does not change the projection of the spin vec-
tor on the direction of the magnetic field, i.e. it does not
change the relative angle θ between the directions of the
magnetic field and the spin. After each jump, the spin
is still precessing around the magnetic field alongside the
same curve. As a result, the total area covered by its
trajectory remains the same, and so does the geometric
phase acquired by the spin state, which is proportional
to this area. Therefore, in the end, the geometric phase
acquired by the spin state will be the same, no mat-
ter how diffused its total phase may be. That does not

mean that dephasing will not affect the measurement of
this phase. Indeed, it will lower the visibility of any in-
terference measurement made on the spin, because the
visibility of the state is lowered when its mixedness is
increased (we will address this in more details in a sep-
arate publication). However, as the calculations above
show, the reduced visibility will be caused by a random-
ization of the dynamical phase, and not the geometrical
one, which proves to be much more robust in this case.

A more realistic example includes spontaneous decay
as a source of decoherence for the spin 1/2 system. In
this case, it is only worth analyzing the no-jump case,
since any jump causes immediate and complete loss of
phase information of the quantum state. Spontaneous
decay Γ = ασ− is a decoherence source that cannot be
associated to a unital map (σ+σ− 6= 1l) and, therefore,
the phase will be affected even if no jump is detected.
However, as we show in figure 2, the no-jump trajectory
is a smooth spiral converging to the lower state, which
still allows us to calculate the phase using Eq. (8). We
obtained γ = π + ω

2α ln
(

〈ψ0|e−4π α

ω
σz |ψ0〉

)

, which in the
limit ω � α leads to

γ ≈ π(1 − cos θ) + (4π)2
α

ω
sin2 θ + o

(α

ω

)2

Again, this result has a very simple geometrical explana-
tion: as we observe the reservoir and detect no jump, the
probability that the system is in the lower state smoothly
increases, changing θ and, therefore, the element of area
covered by the spin trajectory in each infinitesimal time
interval, as shown in figure 2.

Another simple case that can be analyzed is the spin
flip alongside an arbitrary direction Γ = σn̂. In this case,
the no jump situation is again trivial and similar to the
dephasing reservoir, since σ2

n̂ = 1l. When one or more
jumps occur, we can use Eq.(11) (or its generalization to
many jumps) to easily calculate the final phase, which
will be a sum of the partial areas covered in each trajec-
tory with plus or minus sign depending on the respective
coupling energy of the spin with the magnetic field. Our
treatment is, of course, applicable even when the master
equation contains many different sources of errors act-
ing simultaneously on the system, since we can use the
generalized form of equation (11) to calculate the phase.

In conclusion, in this paper, we present a method to
calculate geometric phases in open systems. Our method
is general and can be applied as long as the system dy-
namics is described by a master equation in the form
of Eq.(1), which is the most general completely positive
trace preserving continuous evolution [15]. By using the
quantum jumps approach we avoid the problem of defin-
ing Berry’s phases for mixed states: in each trajectory,
the quantum state of the system remais pure and the
phase can be calculated through usual procedures. In
particular, we show that it is always possible to calcu-
late this phase, either for the no-jump trajectories or
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t0

t1

t2

z

t1'
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FIG. 1: Evolution of the state along a ”one-jump” trajectory
on the Bloch sphere, in the case of phase diffusion decoherence
(Γ ∝ σz). From time t0 to time t1 the state evolves under the

no-jump hamiltonian H̃ alongside the parallel of the sphere.
At time t1 a jump occurs, flipping (instantaneously) the Bloch
vector about the z to the point t′1, and the no-jump evolution
starts again. At time t2 = t0 + 2π/ω the geometric phase
γ = π(1− cos θ) is recovered. The geometric phase is half the
area enclosed in the path spanned by the Bloch vector. This
is given by two contribution, the surface t1 − t0 − t′1 and the
surface t0 − t1 − t2.

for the ones in which one or more jumps occur. We
also show that, for special unital decoherence sources,
the phase remains unaffected for the no jumps trajecto-
ries. As a direct application of our method, we calculate
the geometric phases of spin 1/2 systems coupled to dif-
ferent reservoirs. We show that those phases are totaly
robust against phase diffusion, in which case the lower
visibility observed due to the non-unitary evolution may
be attributed solely to a randomization of the dynami-
cal phase. This property may be interesting for possible
applications, specially in quantum computing, since de-
phasing may be difficult to monitor and correct, in gen-
eral. Therefore, it is interesting noticing that geometric
phases are robust against this decoherence source. We
also present a nice geometrical explanation to this effect,
as well as to the effect on the geometric phase when spon-
taneous emission is present, but no jump is detected. We
also briefly comment on other typical decoherence effects
on the system, like arbitrary spin flips. The method pre-
sented here is completely general and can be applied to
many other physical systems.
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[5] Sjöqvist, E., Pati, A., Ekert, A., Anandan, J. S., Erics-

son, M., Oi, D. K. L., and Vedral, V. Phys. Rev. Lett.
85, 2845 (2000).

[6] Gamliel, D. and Freed, J. H. Phys. Rev. A 39, 3238
(1989).

[7] Plenio, M. and Knight, P. Rev. Mod. Phys. 70, 101
(1998).

[8] Carmichael, H. An open systems approach to quantum
optics. Springer-Verlag, Berlin ; London, (1993).

[9] Peixoto de Faria, J. G., de Toledo Piza, A. F. R., and
Nemes, M. C. quant-ph/0205146 (2002).

[10] Romero, K., Pinto, A. A., and Thomaz, M. Phys. A 307,
142 (2002).
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